5.1 Determinants Which Represent Particular Polynomials 173φn=1
(1−x)
n+1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
1 −xx11 −x 01 /2! 1 1 −x 01 /3! 1 /2! 1 1 −x 0.....................................................1 /(n−1)! 1/(n−2)!.............. 11 −x 01 /n!1/(n−1)!.............. 1 /2! 1 0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
∣
n+1(5.1.8)
After expanding the determinant by the single nonzero element in the last
column, the theorem follows from (5.1.2) and (5.1.4).
Exercises
Prove that
1.
n
∑r=0αrxn−r
yr
=∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
α 0 α 1 α 2 α 3 ··· αn− 1 αn−yx−yx−yx.................−yx∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1.
2.(x+y)n
=∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
1 xx2
x3
··· xn− 1
xn− 1 yxyx2
y ··· xn− 2
yxn− 1
y− 1 yxy··· xn− 3
yxn− 2
y− 1 y ··· xn− 4
yxn− 3
y...........................− 1 y∣
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
n+1.
3.(−b)n
2 F 0(
xa,−n;−ba)
=
∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
−c 1 ba −c 2 b2 a −c 3 b3 a −c 4··· ··· ···−cn− 1 b(n−1)a −cn∣
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n,
wherecr=(r−1)a+b+x. (Frost and Sackfield)and 2 F 0 is the generalized hypergeometric function.