Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
5.1 Determinants Which Represent Particular Polynomials 173

φn=

1

(1−x)
n+1

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣


1 −xx

11 −x 0

1 /2! 1 1 −x 0

1 /3! 1 /2! 1 1 −x 0

.....................................................

1 /(n−1)! 1/(n−2)!.............. 11 −x 0

1 /n!1/(n−1)!.............. 1 /2! 1 0

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣


n+1

(5.1.8)

After expanding the determinant by the single nonzero element in the last


column, the theorem follows from (5.1.2) and (5.1.4). 


Exercises


Prove that


1.

n

r=0

αrx

n−r
y

r
=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

α 0 α 1 α 2 α 3 ··· αn− 1 αn

−yx

−yx

−yx

.................

−yx

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

.

2.(x+y)

n
=



∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

1 xx

2
x

3
··· x

n− 1
x

n

− 1 yxyx

2
y ··· x

n− 2
yx

n− 1
y

− 1 yxy··· x

n− 3
yx

n− 2
y

− 1 y ··· x

n− 4
yx

n− 3
y

...........................

− 1 y



∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

n+1

.

3.(−b)

n
2 F 0

(

x

a

,−n;−

b

a

)

=


∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

−c 1 b

a −c 2 b

2 a −c 3 b

3 a −c 4

··· ··· ···

−cn− 1 b

(n−1)a −cn


∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n

,

where

cr=(r−1)a+b+x. (Frost and Sackfield)

and 2 F 0 is the generalized hypergeometric function.
Free download pdf