Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

296 6. Applications of Determinants in Mathematical Physics


whereτj is a function which appears in the Neugebauer solution and is


defined in (6.2.20).


wr=

2 n

j=1

(−1)

j− 1
Mj(c)x

r
j

ε


j

. (6.10.27)

Then,


xi−xj=

ci−cj

ρ

, independent ofz,

εjε


j=1+x

2
j. (6.10.28)

Now, letH


(m)
2 n
(ε) denote the determinant of order 2nwhose column vectors

are defined as follows:


C

(m)
j
(ε)=

[

εj cjεj c

2
jεj···c

m− 1
j εj^1 cj c

2
j···c

2 n−m− 1
j

]T

2 n

,

1 ≤j≤ 2 n. (6.10.29)

Hence,


C

(m)
j

(

1

ε

)

=

[

1

εj

cj

εj

c
2
j

εj

···

c

m− 1
j

εj

1 cj c

2
j
···c

2 n−m− 1
j

]T

2 n

(6.10.30)

=

1

εj

[

1 cj c

2
j···c

m− 1
j εj cjεj c

2
jεj···c

2 n−m− 1
j εj

]T

2 n

.

But,


C

(2n−m)
j (ε)=

[

εj cjεj c

2
jεj···c

2 n−m− 1
j εj^1 cjc

2
j···c

m− 1
j

]T

2 n

. (6.10.31)

The elements in the last column vector are a cyclic permutation of the


elements in the previous column vector. Hence, applying Property (c(i))


in Section 2.3.1 on the cyclic permutation of columns (or rows, as in this


case),


H

(m)
2 n

(

1

ε

)

=(−1)

m(2n−1)



2 n

j=1

εj



− 1

H

(2n−m)
2 n
(ε),

H

(n+1)
2 n

(

1 /ε

)

H

(n)
2 n

(

1 /ε

) =−

H

(n−1)
2 n
(ε)

H

(n)
2 n
(ε)

. (6.10.32)

Theorem.


a.|wi+j− 2 +wi+j|m=(−ρ

2
)

−m(m−1)/ 2
{V 2 n(c)}

m− 1
H

(m)
2 n
(ε),

b.|wi+j− 2 |m=(−ρ


2
)

−m(m−1)/ 2
{V 2 n(c)}

m− 1
H

(m)
2 n

(

1

ε

)

.

The determinants on the left are Hankelians.

Free download pdf