6.10 The Einstein and Ernst Equations 297
Proof. Proof of (a).Denote the determinant on the left byWm.
wi+j− 2 +wi+j=
2 n
∑
k=1
ykx
i+j− 2
k
,
where
yk=(−1)
k+1
εkMk(c). (6.10.33)
Hence, applying the lemma in Section 4.1.7 withN→ 2 nandn→m,
Wm=
∣
∣
∣
∣
∣
2 n
∑
k=1
ykx
i+j− 2
k
∣ ∣ ∣ ∣ ∣ =
2 n
∑
k 1 ,k 2 ,...,km=1
Ym
(
m
∏
r=2
x
r− 1
kr
)
∣
∣
x
j− 1
ki
∣
∣
m
,
where
Ym=
m
∏
r=1
yk
r
. (6.10.34)
Hence, applying Identity 4 in Appendix A.3,
Wm=
1
m!
2 n
∑
k 1 ,k 2 ,...,km=1
Ym
k 1 ,k 2 ,...km
∑
j 1 ,j 2 ,...,jm
(
m
∏
r=2
x
r− 1
jr
)
V(xj 1 ,xj 2 ,...,xjm).
(6.10.35)
Applying Theorem (b) in Section 4.1.9 on Vandermondian identities,
Wm=
1
m!
2 n
∑
k 1 ,k 2 ,...,km=1
Ym
{
V(xk
1
,xk
2
,...,xk
m
)
} 2
. (6.10.36)
Due to the presence of the squared Vandermondian factor, the conditions of
Identity 3 in Appendix A.3 withN→ 2 nare satisfied. Also, eliminating the
x’s using (6.10.26) and (6.10.28) and referring to Exercise 3 in Section 4.1.2,
{
(V(xk
1
,xk
2
,...,xk
m
)
} 2
=ρ
−m(m−1)
{
V(ck
1
,ck
2
,...,ck
m
)
} 2
. (6.10.37)
Hence,
Wm=ρ
−m(m−1)
∑
1 ≤k 1 <k 2 <...<km≤ 2 n
Ym
{
V(ck 1 ,ck 2 ,...,ckm)
} 2
. (6.10.38)
From (6.10.33) and (6.10.34),
Ym=(−1)
K
Em
m
∏
r=1
Mkr(c),