298 6. Applications of Determinants in Mathematical Physics
where
Em=
m
∏
r=1
εk
r
,
K=
m
∑
r=1
(kr−1). (6.10.39)
Applying Theorem (c) in Section 4.1.8 on Vandermondian identities,
Ym=(−1)
K
Em
V(ck
m+1
,ck
m+2
,...,ck
2 n
){V 2 n(c)}
m− 1
V(ck
1
,ck
2
,...,ck
m
)
. (6.10.40)
Hence,
Wm=
(−1)
K
{V 2 n(c)}
m− 1
ρ
m(m−1)
∑
1 ≤k 1 <k 2 <...<km≤ 2 n
·EmV(ck 1 ,ck 2 ,...,ckm)V(ckm+1,ckm+2,...,ck 2 n).(6.10.41)
Using the Laplace formula (Section 3.3) to expandH
(m)
2 n
(ε) by the first
mrows and the remaining (2n−m) rows and referring to the exercise at
the end of Section 4.1.8,
H
(m)
2 n
(ε)=
∑
1 ≤k 1 <k 2 <···<km≤ 2 n
N 12 ···m;k
1 ,k 2 ,...,km
A 12 ···m;k
1 ,k 2 ,...,km
,
(6.10.42)
where
N 12 ···m;k
1 ,k 2 ,...,km
=EmV(ck
1
,ck
2
,...,ck
m
),
A 12 ···m;k
1 ,k 2 ,...,km
=(−1)
R
M 12 ···m;k
1 ,k 2 ,...,km
=(−1)
R
V(ck
m+1
,ck
m+2
,...,ck
2 n
), (6.10.43)
whereMis the unsigned minor associated with the cofactorAandRis
the sum of their parameters. Referring to (6.10.39),
R=
1
2
m(m+1)+
m
∑
r=1
kr
=K+
1
2
m(m−1). (6.10.44)
Hence,
H
(m)
2 n
(ε)=(−1)
R
∑
1 ≤k 1 <k 2 <···<km≤ 2 n
EmV(ck
1
,ck
2
,...,ck
m
)
·V(ckm+1,ckm+2,...,ck 2 n)
=
(−ρ
2
)
m(m−1)/ 2
{V 2 n(c)}
m− 1
Wm, (6.10.45)
which proves part (a) of the theorem. Part (b) can be proved in a similar
manner.