300 6. Applications of Determinants in Mathematical Physics
Denote this particular solution byUr. Then,
tr=(−ω)
r
Ur,
where
Ur=
2 n
∑
j=1
(−1)
j− 1
Mj(c)fr(xj)
ε
∗
j
(6.10.54)
and the symbol∗denotes the complex conjugate. This function is of the
form (4.13.3), where
aj=
(−1)
j− 1
Mj(c)
ε
∗
j
(6.10.55)
andN=2n. These choices ofajandNmodify the functionkrdefined in
(4.13.5). Denote the modifiedkrbywr, which is given explicitly in (6.10.3).
Since the results of Section 4.13.2 are unaltered by replacingωby (−ω),
it follows from (4.13.22) and (4.13.23) withn→mthat
Pm=(−1)
m(m−1)/ 2
2
m
2
− 1
∣
∣
wi+j+wi+j− 2
∣
∣
m
,
Qm=(−1)
m(m−1)/ 2
2
(m−1)
2 ∣
∣w
i+j− 2
∣
∣
m
. (6.10.56)
Applying the theorem in Section 6.10.4,
Pm=2
m
2
− 1
ρ
−m(m−1)
{
V 2 n(c)
}m− 1
H
(m)
2 n(ε),
Qm=2
(m−1)
2
ρ
−m(m−1)
{
V 2 n(c)
}m− 1
H
(m)
2 n
(
1
ε
∗
)
. (6.10.57)
Hence,
Pn
Pn− 1
=2
2 n− 1
ρ
−2(n−1)
V 2 n(c)
H
(n)
2 n
(ε)
H
(n−1)
2 n (ε)
. (6.10.58)
Also, applying (6.10.32),
Qn+1
Qn
=2
2 n− 1
ρ
− 2 n
V 2 n(c)
H
(n+1)
2 n
(
1 /ε
∗
)
H
(n)
2 n
(
1 /ε
∗
)
=− 2
2 n− 1
ρ
− 2 n
V 2 n(c)
H
(n−1)
2 n
(ε
∗
)
H
(n)
2 n
(ε∗)
. (6.10.59)
Sinceτj=ρεj, (the third line of (6.10.26)), the functionsFandGdefined
in Section 6.2.8 are given by
F=H
(n−1)
2 n (ρε)=ρ
n− 1
H
(n−1)
2 n (ε),
G=H
(n)
2 n
(ρε)=ρ
n
H
(n)
2 n
(ε). (6.10.60)