300 6. Applications of Determinants in Mathematical Physics
Denote this particular solution byUr. Then,
tr=(−ω)r
Ur,where
Ur=2 n
∑j=1(−1)
j− 1
Mj(c)fr(xj)ε∗
j(6.10.54)
and the symbol∗denotes the complex conjugate. This function is of the
form (4.13.3), where
aj=(−1)
j− 1
Mj(c)ε
∗
j(6.10.55)
andN=2n. These choices ofajandNmodify the functionkrdefined in
(4.13.5). Denote the modifiedkrbywr, which is given explicitly in (6.10.3).
Since the results of Section 4.13.2 are unaltered by replacingωby (−ω),it follows from (4.13.22) and (4.13.23) withn→mthat
Pm=(−1)m(m−1)/ 2
2m
2
− 1∣
∣
wi+j+wi+j− 2∣
∣
m,
Qm=(−1)m(m−1)/ 2
2(m−1)2 ∣
∣w
i+j− 2∣
∣
m. (6.10.56)
Applying the theorem in Section 6.10.4,
Pm=2m
2
− 1
ρ−m(m−1){
V 2 n(c)}m− 1
H(m)
2 n(ε),Qm=2(m−1)
2
ρ−m(m−1){
V 2 n(c)}m− 1
H(m)
2 n(
1
ε
∗)
. (6.10.57)
Hence,
PnPn− 1=2
2 n− 1
ρ−2(n−1)
V 2 n(c)H
(n)
2 n
(ε)H
(n−1)
2 n (ε). (6.10.58)
Also, applying (6.10.32),
Qn+1Qn=2
2 n− 1
ρ− 2 n
V 2 n(c)H
(n+1)
2 n(
1 /ε
∗)
H
(n)
2 n(
1 /ε
∗)
=− 2
2 n− 1
ρ− 2 n
V 2 n(c)H
(n−1)
2 n
(ε
∗
)H
(n)
2 n
(ε∗). (6.10.59)
Sinceτj=ρεj, (the third line of (6.10.26)), the functionsFandGdefined
in Section 6.2.8 are given by
F=H
(n−1)
2 n (ρε)=ρn− 1
H(n−1)
2 n (ε),G=H
(n)
2 n
(ρε)=ρn
H(n)
2 n
(ε). (6.10.60)