Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

Appendix A


A.1 Miscellaneous Functions


The Kronecker Delta Function


δij=

{

1 ,j=i

0 ,j=i.

q

j=p

xjδjr=

{

0 ,p≤r≤q,

0 , otherwise.

q

j=p

xjδjr(1−δjr)=xr.

In=[δij]n, the unit matrix,

n

r=1





fr δir

gr δjr





=





fj 1

gi 1





, 1 ≤i, j≤n,

n

r=1

∣ ∣ ∣ ∣ ∣ ∣

aip aiq δir

ajp ajq δjr

akp akq δkr

∣ ∣ ∣ ∣ ∣ ∣

=

∣ ∣ ∣ ∣ ∣ ∣

aip aiq 1

ajp ajq 1

akp akq 1

∣ ∣ ∣ ∣ ∣ ∣

, 1 ≤i, j, k≤n.

δi,even=

{

1 ,ieven,

0 ,iodd.
Free download pdf