Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1

40 3. Intermediate Determinant Theory


as a block in the top left-hand corner. Denote the result by (adjA)


. Then,


(adjA)


=σadjA,

where


σ=(−1)

(p 1 −1)+(p 2 −2)+···+(pr−r)+(q 1 −1)+(q 2 −2)+···+(qr−r)

=(−1)

(p 1 +p 2 +···+pr)+(q 1 +q 2 +···+qr)
.

Now replace eachAijin (adjA)



byaij, transpose, and denote the result

by|aij|



. Then,


|aij|


=σ|aij|=σA.

Raise the order ofJfromr tonin a manner similar to that shown in


(3.6.3), augmenting the firstrcolumns until they are identical with the


firstrcolumns of (adjA)



, denote the result byJ


, and form the product

|aij|



J


. The theorem then appears. 


Illustration.Let (n, r)=(4,2) and let


J=J 23 , 24 =





A 22 A 32

A 24 A 34





.

Then


(adjA)


=

∣ ∣ ∣ ∣ ∣ ∣ ∣

A 22 A 32 A 12 A 42

A 24 A 34 A 14 A 44

A 21 A 31 A 11 A 41

A 23 A 33 A 13 A 43

∣ ∣ ∣ ∣ ∣ ∣ ∣

=σadjA,

where


σ=(−1)

2+3+2+4
=− 1

and


|aij|


=








a 22 a 24 a 21 a 23

a 32 a 34 a 31 a 33

a 12 a 14 a 11 a 13

a 42 a 44 a 41 a 43








=σ|aij|=σA.

The first two columns ofJ



are identical with the first two columns of

(adjA)



:

J=J


=

∣ ∣ ∣ ∣ ∣ ∣ ∣

A 22 A 32

A 24 A 34

A 21 A 31 1

A 23 A 33 1

∣ ∣ ∣ ∣ ∣ ∣ ∣

,

σAJ=|aij|


J

Free download pdf