4.3 Skew-Symmetric Determinants 71b.
2 n
∑k=iEjk=(−1)j+1
δi,odd,i≤j=(−1)
j+1
δi,even, i>jc.i− 1
∑k=1Ejk=(−1)j+1
δi,even,i≤j=(−1)
j+1
δi,odd, i>j.Proof. Referring to Lemma 4.14(b,c),
2 n
∑k=1Ejk=j− 1
∑k=1Ejk+Ejj+2 n
∑k=j+1Ejk=−
j− 1
∑k=1(−1)
j+k+1
+0+2 n
∑k=j+1(−1)
j+k+1=(−1)
j+1
(δj,even+δj,odd)=(−1)
j+1
,which proves (a).
Ifi≤j,2 n
∑k=iEjk=[
2 n
∑k=1−
i− 1
∑k=1]
Ejk=(−1)
j+1
+i− 1
∑k=1(−1)
j+k+1=(−1)
j+1
(1−δj,even)=(−1)
j+1
δi,odd.Ifi>j,
2 n
∑k=iEjk=2 n
∑k=i(−1)
j+k+1=(−1)
j+1
δi,even,which proves (b).
i− 1
∑k=1Ejk=[
2 n
∑k=1−
2 n
∑k=i]
Ejk.Part (c) now follows from (a) and (b).
LetEnbe a skew-symmetric determinant defined as follows:En=|εij|n,whereεij=1,i<j, andεji=−εij, which impliesεii=0.