Determinants and Their Applications in Mathematical Physics

(Chris Devlin) #1
4.3 Skew-Symmetric Determinants 71

b.


2 n

k=i

Ejk=(−1)

j+1
δi,odd,i≤j

=(−1)

j+1
δi,even, i>j

c.

i− 1

k=1

Ejk=(−1)

j+1
δi,even,i≤j

=(−1)

j+1
δi,odd, i>j.

Proof. Referring to Lemma 4.14(b,c),


2 n

k=1

Ejk=

j− 1

k=1

Ejk+Ejj+

2 n

k=j+1

Ejk

=−

j− 1

k=1

(−1)

j+k+1
+0+

2 n

k=j+1

(−1)

j+k+1

=(−1)

j+1
(δj,even+δj,odd)

=(−1)

j+1
,

which proves (a).


Ifi≤j,

2 n

k=i

Ejk=

[

2 n

k=1


i− 1

k=1

]

Ejk

=(−1)

j+1
+

i− 1

k=1

(−1)

j+k+1

=(−1)

j+1
(1−δj,even)

=(−1)

j+1
δi,odd.

Ifi>j,


2 n

k=i

Ejk=

2 n

k=i

(−1)

j+k+1

=(−1)

j+1
δi,even,

which proves (b).


i− 1

k=1

Ejk=

[

2 n

k=1


2 n

k=i

]

Ejk.

Part (c) now follows from (a) and (b). 


LetEnbe a skew-symmetric determinant defined as follows:

En=|εij|n,

whereεij=1,i<j, andεji=−εij, which impliesεii=0.

Free download pdf