Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
4.2 Principle of Virtual Work 95

Bending Moment


The bending moment,M, acting on the member section in Fig. 4.5 produces a distribution of direct
stress,σ, through the depth of the member cross section. The normal force on the element,δA, cor-
respondingtothisstressisthereforeσδA.Againweshallsupposethatthestructureisgivenasmall
arbitraryvirtualdisplacementwhichproducesavirtualdirectstrain,εv,intheelementδA×δx.Thus,
thevirtualworkdonebythenormalforceactingontheelementδAisσδAεvδx.Hence,integrating
overthecompletecrosssectionofthemember,weobtaintheinternalvirtualwork,δwi,M,donebythe
bendingmoment,M,ontheelementallengthofmember:


δwi,M=


A

σdAεvδx (4.18)

Thevirtualstrain,εv,intheelementδA×δxis,fromEq.(15.2),givenby


εv=

y
Rv

whereRvis the radius of curvature of the member produced by the virtual displacement. Thus,
substitutingforεvinEq.(4.18),weobtain


δwi,M=


A

σ

y
Rv

dAδx

or,sinceσyδAisthemomentofthenormalforceontheelement,δA,aboutthezaxis,


δwi,M=

M

Rv

δx

Therefore,foramemberoflengthL,theinternalvirtualworkdonebyanactualbendingmoment,MA,
isgivenby


wi,M=


L

MA

Rv

dx (4.19)

In the derivation of Eq. (4.19), no specific stress–strain relationship has been assumed, so that it is
applicabletoanonlinearsystem.Fortheparticularcaseofalinearlyelasticsystem,thevirtualcurvature
1/Rvmaybeexpressedintermsofanequivalentvirtualbendingmoment,Mv,usingtherelationshipof
Eq.(15.8):


1
Rv

=

Mv
EI

Substitutingfor1/RvinEq.(4.19),wehave


wi,M=


L

MAMv
EI

dx (4.20)
Free download pdf