4.2 Principle of Virtual Work 95
Bending Moment
The bending moment,M, acting on the member section in Fig. 4.5 produces a distribution of direct
stress,σ, through the depth of the member cross section. The normal force on the element,δA, cor-
respondingtothisstressisthereforeσδA.Againweshallsupposethatthestructureisgivenasmall
arbitraryvirtualdisplacementwhichproducesavirtualdirectstrain,εv,intheelementδA×δx.Thus,
thevirtualworkdonebythenormalforceactingontheelementδAisσδAεvδx.Hence,integrating
overthecompletecrosssectionofthemember,weobtaintheinternalvirtualwork,δwi,M,donebythe
bendingmoment,M,ontheelementallengthofmember:
δwi,M=
∫
A
σdAεvδx (4.18)
Thevirtualstrain,εv,intheelementδA×δxis,fromEq.(15.2),givenby
εv=
y
Rv
whereRvis the radius of curvature of the member produced by the virtual displacement. Thus,
substitutingforεvinEq.(4.18),weobtain
δwi,M=
∫
A
σ
y
Rv
dAδx
or,sinceσyδAisthemomentofthenormalforceontheelement,δA,aboutthezaxis,
δwi,M=
M
Rv
δx
Therefore,foramemberoflengthL,theinternalvirtualworkdonebyanactualbendingmoment,MA,
isgivenby
wi,M=
∫
L
MA
Rv
dx (4.19)
In the derivation of Eq. (4.19), no specific stress–strain relationship has been assumed, so that it is
applicabletoanonlinearsystem.Fortheparticularcaseofalinearlyelasticsystem,thevirtualcurvature
1/Rvmaybeexpressedintermsofanequivalentvirtualbendingmoment,Mv,usingtherelationshipof
Eq.(15.8):
1
Rv
=
Mv
EI
Substitutingfor1/RvinEq.(4.19),wehave
wi,M=
∫
L
MAMv
EI
dx (4.20)