4.2 Principle of Virtual Work 95Bending Moment
The bending moment,M, acting on the member section in Fig. 4.5 produces a distribution of direct
stress,σ, through the depth of the member cross section. The normal force on the element,δA, cor-
respondingtothisstressisthereforeσδA.Againweshallsupposethatthestructureisgivenasmall
arbitraryvirtualdisplacementwhichproducesavirtualdirectstrain,εv,intheelementδA×δx.Thus,
thevirtualworkdonebythenormalforceactingontheelementδAisσδAεvδx.Hence,integrating
overthecompletecrosssectionofthemember,weobtaintheinternalvirtualwork,δwi,M,donebythe
bendingmoment,M,ontheelementallengthofmember:
δwi,M=∫
AσdAεvδx (4.18)Thevirtualstrain,εv,intheelementδA×δxis,fromEq.(15.2),givenby
εv=y
RvwhereRvis the radius of curvature of the member produced by the virtual displacement. Thus,
substitutingforεvinEq.(4.18),weobtain
δwi,M=∫
Aσy
RvdAδxor,sinceσyδAisthemomentofthenormalforceontheelement,δA,aboutthezaxis,
δwi,M=M
RvδxTherefore,foramemberoflengthL,theinternalvirtualworkdonebyanactualbendingmoment,MA,
isgivenby
wi,M=∫
LMA
Rvdx (4.19)In the derivation of Eq. (4.19), no specific stress–strain relationship has been assumed, so that it is
applicabletoanonlinearsystem.Fortheparticularcaseofalinearlyelasticsystem,thevirtualcurvature
1/Rvmaybeexpressedintermsofanequivalentvirtualbendingmoment,Mv,usingtherelationshipof
Eq.(15.8):
1
Rv=
Mv
EISubstitutingfor1/RvinEq.(4.19),wehave
wi,M=∫
LMAMv
EIdx (4.20)