Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
5.4Application to the Solution of Statically Indeterminate Systems 137

orassuminglinearelasticity


half-frame

M

EI

∂M

∂SA

ds=


half-frame

M

EI

∂M

∂SD

ds=0(iii)

InAB,


M=−SArsinθ and

∂M

∂SA

=−rsinθ,

∂M

∂SD

= 0

InDB,


M=SDx and

∂M

∂SA

=0,

∂M

∂SD

=x

InCB,


M=SCrsinφ=

(

M 0

r

−SA−SD

)

rsinφ

Thus,


∂M
∂SA

=−rsinφ and

∂M

∂SD

=−rsinφ

SubstitutingtheseexpressionsinEq.(iii)andintegrating,wehave
3.365SA+SC=M 0 /r (iv)
SA+2.178SC=M 0 /r (v)

which,withEq.(ii),enableSA,SD,andSCtobefound.Inmatrixform,theseequationsarewrittenas



M 0 /r
M 0 /r
M 0 /r




=



111

3.356 0 1

1 0 2.178






SA

SD

SC




(vi)

fromwhichweobtain



SA

SD

SC




=



0 0.345 −0.159

1 −0.187 −0.373

0 −0.159 0.532






M 0 /r
M 0 /r
M 0 /r




(vii)

whichgive


SA=0.187M 0 /rSD=0.44M 0 /rSC=0.373M 0 /r

Again the square matrix of Eq. (vi) has been inverted to produce Eq. (vii). The bending moment
distributionwithdirectionsofbendingmomentisshowninFig.5.18.
Sofarinthischapter,wehaveconsideredtheapplicationoftheprincipleofthestationaryvalueof
thetotalcomplementaryenergyofelasticsystemsintheanalysisofvarioustypesofstructure.Although
themajorityoftheexamplesusedtoillustratethemethodareoflinearlyelasticsystems,itwaspointed
outthatgenerallytheymaybeusedwithequalfacilityforthesolutionofnonlinearsystems.

Free download pdf