5.4Application to the Solution of Statically Indeterminate Systems 137
orassuminglinearelasticity
∫
half-frame
M
EI
∂M
∂SA
ds=
∫
half-frame
M
EI
∂M
∂SD
ds=0(iii)
InAB,
M=−SArsinθ and
∂M
∂SA
=−rsinθ,
∂M
∂SD
= 0
InDB,
M=SDx and
∂M
∂SA
=0,
∂M
∂SD
=x
InCB,
M=SCrsinφ=
(
M 0
r
−SA−SD
)
rsinφ
Thus,
∂M
∂SA
=−rsinφ and
∂M
∂SD
=−rsinφ
SubstitutingtheseexpressionsinEq.(iii)andintegrating,wehave
3.365SA+SC=M 0 /r (iv)
SA+2.178SC=M 0 /r (v)
which,withEq.(ii),enableSA,SD,andSCtobefound.Inmatrixform,theseequationsarewrittenas
⎧
⎨
⎩
M 0 /r
M 0 /r
M 0 /r
⎫
⎬
⎭
=
⎡
⎣
111
3.356 0 1
1 0 2.178
⎤
⎦
⎧
⎨
⎩
SA
SD
SC
⎫
⎬
⎭
(vi)
fromwhichweobtain
⎧
⎨
⎩
SA
SD
SC
⎫
⎬
⎭
=
⎡
⎣
0 0.345 −0.159
1 −0.187 −0.373
0 −0.159 0.532
⎤
⎦
⎧
⎨
⎩
M 0 /r
M 0 /r
M 0 /r
⎫
⎬
⎭
(vii)
whichgive
SA=0.187M 0 /rSD=0.44M 0 /rSC=0.373M 0 /r
Again the square matrix of Eq. (vi) has been inverted to produce Eq. (vii). The bending moment
distributionwithdirectionsofbendingmomentisshowninFig.5.18.
Sofarinthischapter,wehaveconsideredtheapplicationoftheprincipleofthestationaryvalueof
thetotalcomplementaryenergyofelasticsystemsintheanalysisofvarioustypesofstructure.Although
themajorityoftheexamplesusedtoillustratethemethodareoflinearlyelasticsystems,itwaspointed
outthatgenerallytheymaybeusedwithequalfacilityforthesolutionofnonlinearsystems.