1.8Mohr’s Circle of Stress 19
to200N/mm^2 (tension).Calculatetheallowablevalueofshearstressatthepointonthegivenplanes.
Determinealsothevalueoftheotherprincipalstressandthemaximumvalueofshearstressatthepoint.
VerifyyouranswerusingMohr’scircle.
ThestresssystematthepointinthematerialmayberepresentedasshowninFig.1.13byconsidering
the stresses to act uniformly over the sides of a triangular element ABC of unit thickness. Suppose
thatthedirectstressontheprincipalplaneABisσ.Forhorizontalequilibriumoftheelement,
σABcosθ=σxBC+τxyAC
whichsimplifiesto
τxytanθ=σ−σx (i)
Consideringverticalequilibriumgives
σABsinθ=σyAC+τxyBC
or
τxycotθ=σ−σy (ii)
Hence,fromtheproductofEqs.(i)and(ii),
τxy^2 =(σ−σx)(σ−σy)
Nowsubstitutingthevaluesσx=160N/mm^2 ,σy=−120N/mm^2 ,andσ=σ 1 =200N/mm^2 ,wehave
τxy=±113N/mm^2
ReplacingcotθinEq.(ii)by1/tanθfromEq.(i)yieldsaquadraticequationinσ
σ^2 −σ(σx−σy)+σxσy−τxy^2 =0(iii)
Fig.1.13
Stress system for Example 1.3.