17.1 Torsion of Closed Section Beams 507The minimum thickness of the beam corresponding to the maximum allowable shear stress of
200N/mm^2 isobtaineddirectlyusingEq.(17.1)inwhichTmax=15kNm.
Then
tmin=15 × 106 × 4
2 ×π× 2002 × 200=1.2mmTherateoftwistalongthebeamisgivenbyEq.(17.4)inwhich
∮
ds
t
=
π× 200
tminHence
dθ
dz=
T
4 A^2 G
×
π× 200
tmin(i)TakingtheoriginforzatoneofthefixedendsandintegratingEq.(i)forhalfthelengthofthebeam,
weobtain
θ=T
4 A^2 G
×
200 π
tminz+C 1 ,whereC 1 isaconstantofintegration.Atthefixedendwherez=0,θ=0,soC 1 =0.
Hence
θ=T
4 A^2 G
×
200 π
tminzThemaximumangleoftwistoccursatthemidspanofthebeamwherez=1m.Hence
tmin=15 × 106 × 200 ×π× 1 × 103 × 180
4 ×(π× 2002 / 4 )^2 × 25000 × 2 ×π=2.7mmTheminimumallowablethicknessthatsatisfiesbothconditionsistherefore2.7mm.
Example 17.2
Determinethewarpingdistributioninthedoublysymmetricalrectangular,closedsectionbeam,shown
inFig.17.4,whensubjectedtoananticlockwisetorqueT.
Fromsymmetry,thecenteroftwistRwillcoincidewiththemidpointofthecrosssection,andpoints
ofzerowarpingwilllieontheaxesofsymmetryatthemidpointsofthesides.Weshall,therefore,take
theoriginforsatthemidpointofside14andmeasuresinthepositive,anticlockwise,sensearoundthe
section.AssumingtheshearmodulusGtobeconstant,werewriteEq.(17.5)intheform
ws−w 0 =Tδ
2 AG(
δOs
δ−
AOs
A)
(i)