Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

66 CHAPTER 3 Torsion of Solid Sections


Fig.3.1


Torsion of a bar of uniform, arbitrary cross section.


which identically satisfies the third of the equilibrium equations (3.1) whatever formφmay take.
Therefore,wehavetofindthepossibleformsofφwhichsatisfythecompatibilityequationsandthe
boundary conditions, thelatter being, in fact, therequirement that distinguishes onetorsion problem
fromanother.
Fromtheassumedstateofstressinthebar,wededucethat


εx=εy=εz=γxy=0 (seeEqs.(1.42)and(1.46))

Further, sinceτxzandτyzand henceγxzandγyzarefunctions ofxandyonly, then the compatibility
equations(1.21)through(1.23)areidenticallysatisfiedasisEq.(1.26).Theremainingcompatibility
equations,(1.24)and(1.25),arethenreducedto



∂x

(


∂γyz
∂x

+

∂γxz
∂y

)

= 0


∂y

(

∂γyz
∂x


∂γxz
∂y

)

= 0

Substituting initially forγyzandγxzfrom Eqs. (1.46) and then forτzy(=τyz)andτzx(=τxz)from
Eqs.(3.2)gives



∂x

(

∂^2 φ
∂x^2

+

∂^2 φ
∂y^2

)

= 0



∂y

(

∂^2 φ
∂x^2

+

∂^2 φ
∂y^2

)

= 0

or



∂x

∇^2 φ= 0 −


∂y

∇^2 φ=0, (3.3)
Free download pdf