Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
3.1Prandtl Stress Function Solution 71

ItisconvenienttointroduceatorsionconstantJdefinedbythegeneraltorsionequation


T=GJ


dz

(3.12)

The productGJis known as thetorsional rigidityof the bar and may be written, from Eqs. (3.8)
and(3.11),


GJ=−

4 G

∇^2 φ

∫∫

φdxdy (3.13)

ConsidernowthelineofconstantφinFig.3.5.Ifsisthedistancemeasuredalongthislinefrom
somearbitrarypoint,then


∂φ
∂s

= 0 =

∂φ
∂y

dy
ds

+

∂φ
∂x

dx
ds

UsingEqs.(3.2)and(3.6),wemayrewritethisequationas


∂φ
∂s

=τzxl+τzym= 0 (3.14)

FromFig.3.5thenormalandtangentialcomponentsofshearstressare


τzn=τzxl+τzym τzs=τzyl−τzxm (3.15)

ComparingthefirstofEqs.(3.15)withEq.(3.14),weseethatthenormalshearstressiszerosothat
theresultantshearstressatanypointistangentialtoalineofconstantφ.Theseareknownaslinesof
shearstressorshearlines.
SubstitutingφinthesecondofEqs.(3.15),wehave


τzs=−

∂φ
∂x

l−

∂φ
∂y

m

Fig.3.5


Lines of shear stress.

Free download pdf