Mathematics_Today_-_October_2016

(backadmin) #1

(c)^1
1


1

(^21)
2
e
ex
ex
c



  • log sin +
    cos
    , (e is greater than 1)
    (d)^2
    1
    1
    (^21)
    2
    e
    exe x
    ex
    c

    ++−


  • log cos sin +
    cos
    ,
    (e is greater than 1)





  1. Let f be a differentiable function such that


f′(x) =+fx()∫fxdxf() , () 0 =^4 −e ,
3


2

0

2
then f(x) is

(a) ex− e −








(^21)
3
(b) ex−()e −
(^22)
3
(c) ex+ez−−[arg |^1 |]
3
(d) None of these
Multiple Correct Answer Type



  1. IfI x
    x


dx I x
x

==∫∫sin(sin ) dx
sin

, sin
0

2
2
0

2

ππ

andI x
x
3 dx
0

2
=∫sin(tan )
tan

π

, then which of the following

is true?
(a) I 1 > I 3 (b) I 2 > I 3
(c) I 1 > I 2 (d) I 1 < I 2



  1. If f(x) is monotonic and differentiable function,


then 2 xb f^1 x dx
fa


fb
(())
()

()
∫ − − =

(a) (() ())fx fadx
a


b

(^22) −
∫ (b) (() ())fx fbdx
a
b
(^22) −

(c) fxdx abfb
a
b
(^22) () +(− ) ()

(d) fxdx abfa
a
b
(^22) () +(− ) ()



  1. dx
    ()xxx()()1


2 1
1

1
+^20101

=
+


+








∫ αβαβ⎥
+ c

where α, β > 0 then


(a) |α – β| = 1
(b) (β + 2)(α + 1) = (2010)^2
(c) β, α, 2010 are in A.P.
(d) α + 1 = β + 2 = 2010



  1. x
    x


x
x

+ dx


⎝⎜


⎠⎟ +


+


⎝⎜


⎠⎟ −




⎩⎪




− ⎭⎪


1
1

1
1

2

22

12

12
is
/

/

(a) 4 4
3

ln⎛
⎝⎜


⎠⎟

(b) 4 3
4

ln⎛⎝⎜ ⎞⎠⎟

(c) − ⎛
⎝⎜


⎠⎟

ln^81
256

(d) ln^256
81


⎝⎜


⎠⎟


  1. Letfx x then
    t


dt

x
() sin
/ cos

=
2 ∫ 41 +^2

2

π
(a) f′⎛⎝⎜π⎟⎞⎠=π
2

(b) f′⎛⎝⎜−π⎟⎞⎠=π
2

(c) f′⎛⎝⎜^3 ⎟⎞⎠=−
2

π 3 π (d) ′ =
∫ +
f dx
x

()
cos

/
π
π

π

1 2

4

2

2


  1. The value of tdt
    t


dt
e tt

x

e

x

1 11 +^212

+
∫∫/ +

tan

/

cot

()

is

(a)^1
2 +tan^2 x

(b) 1

(c) π
4

(d)^2
11 2

1
π

dt
−∫ +t
Comprehension Type
Paragraph for Q. No. 41 to 43
Let f(x) defined in [a, b] has discontinuities C 1 , C 2 , C 3 ,
...., Cn such that a < C 1 < C 2 < .... < Cn < b then

fxdx fxdx fxdx
a

b

C

C

a

C
∫∫( ) =+ +∫ ( ) ( ) ....
1

1 2

++∫ ∫

fxdx fxdx
C

b

C

C

n n

n
() ()
1


  1. [] 23
    1


1
xdx− =

∫ (where [.] is greatest integer


function)
(a) –7 (b) –9 (c) 5 (d) 11/2


  1. ∫[tan−^1 ] =
    0


50
xdx

π
(where [.] is greatest integer

function)
(a) tan1 + 50π (b) –tan1
(c) 50π – tan1 (d) 20π – 2tan1
Free download pdf