(c)^1
1
1
(^21)
2
e
ex
ex
c
−
−
- log sin +
cos
, (e is greater than 1)
(d)^2
1
1
(^21)
2
e
exe x
ex
c
−
++−
log cos sin +
cos
,
(e is greater than 1)
- Let f be a differentiable function such that
f′(x) =+fx()∫fxdxf() , () 0 =^4 −e ,
3
2
0
2
then f(x) is
(a) ex− e −
⎛
⎝
⎜
⎞
⎠
⎟
(^21)
3
(b) ex−()e −
(^22)
3
(c) ex+ez−−[arg |^1 |]
3
(d) None of these
Multiple Correct Answer Type
- IfI x
x
dx I x
x
==∫∫sin(sin ) dx
sin
, sin
0
2
2
0
2
ππ
andI x
x
3 dx
0
2
=∫sin(tan )
tan
π
, then which of the following
is true?
(a) I 1 > I 3 (b) I 2 > I 3
(c) I 1 > I 2 (d) I 1 < I 2
- If f(x) is monotonic and differentiable function,
then 2 xb f^1 x dx
fa
fb
(())
()
()
∫ − − =
(a) (() ())fx fadx
a
b
(^22) −
∫ (b) (() ())fx fbdx
a
b
(^22) −
∫
(c) fxdx abfb
a
b
(^22) () +(− ) ()
∫
(d) fxdx abfa
a
b
(^22) () +(− ) ()
∫
- dx
()xxx()()1
2 1
1
1
+^20101
=
+
−
+
⎡
⎣
⎢
⎢
⎤
⎦
⎥
∫ αβαβ⎥
+ c
where α, β > 0 then
(a) |α – β| = 1
(b) (β + 2)(α + 1) = (2010)^2
(c) β, α, 2010 are in A.P.
(d) α + 1 = β + 2 = 2010
- x
x
x
x
+ dx
−
⎛
⎝⎜
⎞
⎠⎟ +
−
+
⎛
⎝⎜
⎞
⎠⎟ −
⎧
⎨
⎪
⎩⎪
⎫
⎬
⎪
− ⎭⎪
∫
1
1
1
1
2
22
12
12
is
/
/
(a) 4 4
3
ln⎛
⎝⎜
⎞
⎠⎟
(b) 4 3
4
ln⎛⎝⎜ ⎞⎠⎟
(c) − ⎛
⎝⎜
⎞
⎠⎟
ln^81
256
(d) ln^256
81
⎛
⎝⎜
⎞
⎠⎟
- Letfx x then
t
dt
x
() sin
/ cos
=
2 ∫ 41 +^2
2
π
(a) f′⎛⎝⎜π⎟⎞⎠=π
2
(b) f′⎛⎝⎜−π⎟⎞⎠=π
2
(c) f′⎛⎝⎜^3 ⎟⎞⎠=−
2
π 3 π (d) ′ =
∫ +
f dx
x
()
cos
/
π
π
π
1 2
4
2
2
- The value of tdt
t
dt
e tt
x
e
x
1 11 +^212
+
∫∫/ +
tan
/
cot
()
is
(a)^1
2 +tan^2 x
(b) 1
(c) π
4
(d)^2
11 2
1
π
dt
−∫ +t
Comprehension Type
Paragraph for Q. No. 41 to 43
Let f(x) defined in [a, b] has discontinuities C 1 , C 2 , C 3 ,
...., Cn such that a < C 1 < C 2 < .... < Cn < b then
fxdx fxdx fxdx
a
b
C
C
a
C
∫∫( ) =+ +∫ ( ) ( ) ....
1
1 2
++∫ ∫
−
fxdx fxdx
C
b
C
C
n n
n
() ()
1
- [] 23
1
1
xdx− =
−
∫ (where [.] is greatest integer
function)
(a) –7 (b) –9 (c) 5 (d) 11/2
- ∫[tan−^1 ] =
0
50
xdx
π
(where [.] is greatest integer
function)
(a) tan1 + 50π (b) –tan1
(c) 50π – tan1 (d) 20π – 2tan1