Mathematics_Today_-_October_2016

(backadmin) #1

  1. (c) : Let I = cos
    cos


21
21

x
x

− dx
∫ +

⇒ =− −






I ∫∫x =−
x

dx x
x

(cos) dx
(cos)

sin
cos

12
12

2
2

2
2

⇒ Ixdx xdx=−∫tan^22 =−−∫(sec 1 )


⇒ I = x – tanx + c



  1. (b) : ()
    () ()


x
xx

dx xx
xx

+ dx
+

= ++
∫∫+

1
1

12
1

2
2

2
2

= +
+

+
∫∫+

x
xx

dx x
xx

dx

2
22

1
1

2
() () 1
=+
+
∫dx ∫ =+− +
x

dx
x

(^2) exxc
1
2 log^2 tan^1



  1. (c) : Put xe + ex = t ⇒ e(xe – 1 + ex – 1)dx = dt


Now, xe
xe

dx
e

dt
te

t
e

xe c

ex
ex

−−+ ex
+
∫∫== = ++

(^11) 11 1
log log( )



  1. (b) : LetI x
    xx


= dx
∫ +

sin
sin cos

2
44

=
+

=
∫ ∫ +

22

(^441)
2
4
sin cos
sin cos
tan sec
tan
xx
xx
dx xx
x
dx
Put tan^2 x = t ⇒ 2tanx sec^2 xdx = dt
∴ I = dt
t
tc x c
1 2
112



  • ∫ =+=tan−−tan (tan )+



  1. (a) : Put a^2 + b^2 sin^2 x = t ⇒ b^2 sin2xdx = dt, then
    sin
    sin
    222211 x 2 2 log
    ab x


dx
b

dt
t b

tc
+
∫∫==+

=++^12222
b

log(absin xc)


  1. (c) :


cos
(cos sin )

2
2

x
xx

dx
∫ +

= − +
∫ +

(cos sin )(cos sin )
(cos sin )

xxxx
xx
2 dx= −
∫ +

cos sin
cos sin

xx
xx

dx

Put t = sinx + cosx ⇒dt =(cosx – sinx)dx, then it
reduces to
1
t
∫ dt=+=logt c log(sinx+ +cos )x c



  1. (a) :^1
    11 −^22


=

∫∫



e dx −

e
e
x dx

x
x

Put e–x = t ⇒ –e–x dx = dt, then it reduces to




∫^1 =− + − +
1
2 2 1
t

dt log[t t ] c

=− + − =− + −









log[ee−−] log
e

e
e

xx
x

x
x

2 1 112

=−log[ 11 + −eec^2 xx] log++ =xec−log[ 11 + −^2 x]+


  1. (c) : sin
    sin sin


sin( )
sin sin

2
53

53
53

x
xx

dx xx
xx
∫∫= − dx

=∫sin cos −cos sin
sin sin

53 53
53

xx xx
xx

dx

=^1 − +
3

3 1
5

log sin xxclog sin 5


  1. (b) : dx
    ∫xxlog ⋅log(log )x
    Put log (logx) = z
    ⇒ 11
    logxx


⋅ dx=dz, then it reduces to
dz
z
∫ ==logzxclog[log(log )]+


  1. (a) : Put x = sinθ ⇒ dx = cosθdθ, then
    1
    1


1 1
2

12

2
2

+ 2

∫∫x =+∫ =+ −
x

dx ( sin θθθ)d ( cos θθ)d

=^3 −−+
2

1
2

θ sinθθ 1 sin (^2) c= (^3) − −−+
2
1
2
sin^12 xx xc 1



  1. (b) : Put x = a(sinθ)2/3
    ⇒ dx=^2 a − d
    3


(sin )θθθ^13 / cos



=

∫∫



x
ax

dx

aa

aa
33 d

12 13 13

332

2
3

//(sin ) (sin ) /cos

sin

θθθ

θ

θ

=

(^2) ∫ = − ⎜⎛⎝ ⎞⎟⎠ +
(^31)
2
3
32
32 2
1
32
a d
a
x
a
/ c
/
cos /
sin
θθ sin
θ



  1. (d) : Put 1 + x^3 = t^2 ⇒ 3 x^2 dx = 2tdt
    ∴ Itdt=^2 ∫ −
    3


()^21

= −






⎟+= − += − ++

2
33

2
9

3 2
9

21
t^3233
tc tt() ( )c x xc


  1. (a) : LetI
    xx


= dx
∫ − +

1
[( 12 )(^3514 )]/
=

+


⎝⎜


⎠⎟ +

+ = ⇒ + =


1
1
2

2
1
2

3
2

(^342)
2
x
x
x
dx
x
x t x dx dt
/
()
()
Put

Free download pdf