- (a) : Put x = tanθ ⇒ dx = sec^2 θdθ
Also asxx== 00 and == 1
4
,,θθπ
Therefore, tan sec
/
−
∫∫=
1
0
1
2
0
4
xdx θθθd
π
=ππ− = −
4
2
4
1
2
log log 2
- (c) : I dx
x
=
∫ 0 2 +
2
cos
π/
=
++−
∫
dx
2 xxxx
2
2
222
0 2222
2
sin cos cos sin
π/
=
+
=
+
∫∫
dx
xx
x
sin cos xdx
sec
tan
//
0 22
2 2
0 2
2
2 3 2
2
(^32)
ππ
Putt=tanx ⇒dt= sec xdx,then
2
1
22
2
I dt
t
- = ⎛
⎝⎜
⎞
∫ ⎠⎟
2 −
3
2
3
1
0 2 3
1
tan^1
- (a) : Put x = atanθ ⇒ dx = asec^2 θdθ
∴ (^) I aa
a
= ∫ ⋅ d
44 2
88
0
(^4) tan sec
sec
/ θθ
θ
θ
π
==−
⎡
⎣
⎢
⎢
⎤
⎦
⎥
∫∫⎥
11
3
42
3
0
4
46
0
4
a
d
a
sin cos (sin sin )d
//
θθθ θ θθ
ππ
= − − −
⎡
⎣
⎢
⎢
⎤
⎦
⎥
∫ ⎥
112
4
12
(^38)
23
0
4
a
(cos) (cos)d
/ θθ
θ
π
=++^1 ∫ −
8
3 121 222^2
0
4
a
( cos )( cos cos )d
/
θθθθ
π
=^1 ∫ −−+
8
3 12232 2
0
4
a
( cos cos cos )d
/
θθθθ
π
=^1 ∫ −− +
32
3 2224 6
0
4
a
( cos cos cos )d
/
θθθθ
π
= ⎡ −−+
⎣⎢
⎤
⎦⎥
1
32
2 2
2
4
2
6
(^360)
4
a
θ θθθ
sin sin sin π/
=^1 ⎛⎝⎜ − ⎞⎠⎟
16 4
1
a^33
π
- (a) : Let I xx
x
= + dx
∫ +
sin cos
sin
/
0 916 2
π 4
Put sinx – cosx = t ⇒ (sinx + cosx)dx = dt
I dt
t
dt
t
=
+ −
=
−−∫∫ 1 9 16 1^2 25 16−
0
1 2
0
()
I dt
t
x
x
=
⎛
⎝
⎞
⎠ −
= +
−
⎡
⎣⎢
⎤
−∫ ⎦⎥−
1
(^165)
4
1
16
2
5
54
1 2 2 54
0
1
0
log
=^1 − +=
40
1191
20
[log log log ] log 3
- (b) : Let I xxdx
xx
=
∫ ++
sin cos
cos cos
/
0 2
2
32
π
Put cosx = t ⇒ –sinxdx = dt, then
I tdt
tt tt
= dt
++
=^2
+
−
+
⎡
⎣⎢
⎤
∫ 2 0 ∫ ⎦⎥
1
0
1
32 2
1
1
=+[ log(tt) log(− +=)]^10 [ log −−log log ]22 123222
=[log 98 −log ] log= ⎛⎝⎜^9 ⎟⎠⎞
8
- (a) : Let Imxnxdx= (^2) ∫
0
sin sin
π
=∫[cos(mnx−−) cos(mnxdx+ ) ]
0
π
= −
−
− +
- ⎡
⎣⎢
⎤
⎦⎥
sin( )
()
sin( )
()
mnx
mn
mnx
mn 0
π
= sin( )
()
sin( )
()
mn
mn
mn
mn
−
−
− +
⎡
⎣⎢
⎤
⎦⎥
ππ= 0
Since, sin(m – n)π = 0 = sin(m + n)π for m ≠ n
- (c) :
dx
() 1 a cos xxsin a cos xxsin
22
2
22
0 +^2 ⎛^22 +^22
⎝
⎞
⎠− −
⎛
⎝
⎞
⎠
∫
π
=
− ++
∫
dx
(^0) ( 1 a) cos^222 x ( 1 a) sin^222 x
π
− ++
⎧
⎨
⎩
⎫
⎬
⎭
∞
∫
2
(){()/()} 1112220 2
;tan
a
dt
aat
where t = x
−
−
⎡ ⎛⎝⎜ ⋅ ⎞⎠⎟
⎣⎢
⎤
⎦⎥
(^2) − ∞
1
1
1
1
(^21)
1
() 0
()
()
tan
a
a
a
a
a
t
−
∞− =
−
(^2) −−
1
0
(^21)
11
()aa[tan tan ]^2
π
- (b)