Mathematics_Today_-_October_2016

(backadmin) #1

  1. (a) : Put x = tanθ ⇒ dx = sec^2 θdθ


Also asxx== 00 and == 1
4

,,θθπ

Therefore, tan sec

/

∫∫=

1
0

1
2
0

4
xdx θθθd

π

=ππ− = −
4

2
4

1
2

log log 2


  1. (c) : I dx
    x


=
∫ 0 2 +

2
cos

π/

=
++−


dx
2 xxxx
2

2
222

0 2222

2

sin cos cos sin

π/

=
+

=
+

∫∫


dx
xx

x

sin cos xdx

sec

tan

//

0 22

2 2

0 2

2

2 3 2

2

(^32)
ππ
Putt=tanx ⇒dt= sec xdx,then
2
1
22
2
I dt
t



  • = ⎛
    ⎝⎜

    ∫ ⎠⎟
    2 −
    3
    2
    3
    1
    0 2 3
    1
    tan^1



  1. (a) : Put x = atanθ ⇒ dx = asec^2 θdθ


∴ (^) I aa
a
= ∫ ⋅ d
44 2
88
0
(^4) tan sec
sec
/ θθ
θ
θ
π
==−







∫∫⎥
11
3
42
3
0
4
46
0
4
a
d
a
sin cos (sin sin )d
//
θθθ θ θθ
ππ
= − − −







∫ ⎥
112
4
12
(^38)
23
0
4
a
(cos) (cos)d
/ θθ
θ
π
=++^1 ∫ −
8
3 121 222^2
0
4
a
( cos )( cos cos )d
/
θθθθ
π
=^1 ∫ −−+
8
3 12232 2
0
4
a
( cos cos cos )d
/
θθθθ
π
=^1 ∫ −− +
32
3 2224 6
0
4
a
( cos cos cos )d
/
θθθθ
π
= ⎡ −−+
⎣⎢

⎦⎥
1
32
2 2
2
4
2
6
(^360)
4
a
θ θθθ
sin sin sin π/
=^1 ⎛⎝⎜ − ⎞⎠⎟
16 4
1
a^33
π



  1. (a) : Let I xx
    x


= + dx
∫ +

sin cos
sin

/

0 916 2

π 4

Put sinx – cosx = t ⇒ (sinx + cosx)dx = dt

I dt
t

dt
t

=
+ −

=
−−∫∫ 1 9 16 1^2 25 16−

0

1 2

0
()

I dt
t

x
x

=



⎠ −

= +


⎣⎢


−∫ ⎦⎥−

1

(^165)
4
1
16
2
5
54
1 2 2 54
0
1
0
log
=^1 − +=
40
1191
20
[log log log ] log 3



  1. (b) : Let I xxdx
    xx


=
∫ ++

sin cos
cos cos

/

0 2

2
32

π

Put cosx = t ⇒ –sinxdx = dt, then

I tdt
tt tt

= dt
++

=^2
+


+


⎣⎢


∫ 2 0 ∫ ⎦⎥

1

0

1
32 2

1
1
=+[ log(tt) log(− +=)]^10 [ log −−log log ]22 123222

=[log 98 −log ] log= ⎛⎝⎜^9 ⎟⎠⎞
8


  1. (a) : Let Imxnxdx= (^2) ∫
    0
    sin sin
    π
    =∫[cos(mnx−−) cos(mnxdx+ ) ]
    0
    π
    = −

    − +




  • ⎣⎢

    ⎦⎥
    sin( )
    ()
    sin( )
    ()
    mnx
    mn
    mnx
    mn 0
    π
    = sin( )
    ()
    sin( )
    ()
    mn
    mn
    mn
    mn


    − +



  • ⎣⎢

    ⎦⎥
    ππ= 0
    Since, sin(m – n)π = 0 = sin(m + n)π for m ≠ n





  1. (c) :
    dx
    () 1 a cos xxsin a cos xxsin
    22


2
22

0 +^2 ⎛^22 +^22


⎠− −






π

=
− ++


dx

(^0) ( 1 a) cos^222 x ( 1 a) sin^222 x
π




  • − ++








    2
    (){()/()} 1112220 2
    ;tan
    a
    dt
    aat
    where t = x










  • ⎡ ⎛⎝⎜ ⋅ ⎞⎠⎟
    ⎣⎢

    ⎦⎥
    (^2) − ∞
    1
    1
    1
    1
    (^21)
    1
    () 0
    ()
    ()
    tan
    a
    a
    a
    a
    a
    t



    ∞− =

    (^2) −−
    1
    0
    (^21)
    11
    ()aa[tan tan ]^2
    π





  1. (b)

Free download pdf