Mathematics_Today_-_October_2016

(backadmin) #1
SECTION-II
Multiple Correct Answer Type


  1. If G


GG
abc,, be unit vectors such that G

G
abc⊥ , is
inclined at the same angle to both G

G
aband and
GGcpaqbrab=++×G ()G G then
(a) p = q (b) |p| ≤ 1
(c) |q| ≤ 1 (d) pq > 1


  1. If a, b, c be three positive numbers and (ab + bc

    • ca)x^2 + (a + b + c)x + 1 = 0 has complex roots,
      then
      (a) acb+>
      (b) abc++> 4
      (c) 111 111




(^1110)
ab bc ca bc ca ab
ca ab bc
⎛ + −




⎟ + −






×+⎛ −
⎝⎜

⎠⎟



(d) none of these




  1. If a sin θ + b cos θ = c = a cosec θ + b sec θ,then


(a) sin 2θ= 2222
−−

ab
cab

(b)
tan^3 θ=a
b
(c) a cos^3 θ + b sin^3 θ = 0

(d)
sinθθ+=cosec acb+ −
ac

222


  1. Let fx x()= {}x


1
(where {·} denotes the fractional
part of x) then
(a)
lim ( )
x

f x
→+

=
0

2013 2013

(b)
lim ( )
x

f x
→−

=
0

2013 1

(c)
lim ( )
x

fex
→+

=
0

2013

(d)
lim ( )
x

f x
→ 0

2013 does not exist


  1. A person draws 3 balls randomly from a bag
    containing 3 white and 3 black balls and then he
    put 3 red balls into the bag and draws 3 balls again
    randomly. The probability that now he has all 3
    balls of different colour is
    (a) > 20 % (b) > 25 %
    (c) > 30 % (d) > 33 %


SOLUTIONS


  1. (c) :


Axxx

r
r
r

= ⎛−
⎝⎜


⎠⎟




⎩⎪




⎭⎪

=− + −∞
=



1
2

1 1
2

1
4

2
0

sin sin^24 sin ... to

=
−−⎛
⎝⎜


⎠⎟

=
+

1
1 1
2

2
sin^2 x^2 sin^2 x

B rxxx
r

==+++∞
=


∑sin^2 sin sin ...
0

1to^24 =^1
cos^2 x

∴ =+⇒
+

AB x x x=
x

x
x

: sin :( cos ) cos
sin

sin
cos

4122
2

4
2

2 2
2

2
2

⇒ cos^4 x = 2sin^2 x + sin^4 x ⇒sinx=±^1
2
Hence, there will be 8 solutions in [–2π, 2π]


  1. (b) :


lim

( ) ( ) .... ( )
x

xx x
→∞ x

{}++++++
+

1 2 2013
2013

2013 2013 2013
2013 20133

=

⎛ +
⎝⎜


⎠⎟

++⎛
⎝⎜


⎠⎟

+

+

→∞

lim

...........

x

x^2013 xx

1 2013 2013
1 2 1

2013
xx

x
x

⎛ +
⎝⎜


⎠⎟















+⎛
⎝⎜


⎠⎟









1

1 2013

2013

2013

2013

= ++++++
+

( 01 ) ( 01 ) .... ( 01 ) =
10

2013

2013 2013 2013

[As x → ∞, 1/x → 0]


  1. (d) : Let x = z^3 ⇒ dx = 3z^2 dz
    3 2
    2


zdz
∫zz−
=

= − +
∫∫−
3
1

3 11
1

zdz
z

z
z

()dz

=+ (^313) []zzcx x clog | − |+=⎡⎣^33 +log | − 1 |⎤⎦+
⇒ α = β = γ = 3 ⇒ α, β, γ are in A.P. and G.P. both.



  1. (c) : ... f(x) is an identity function ∴ f(x) = x
    ∴ Given equation becomes


xr
r

{}− + − =
=

∑ ()^20120


1
1

3



+

+

(^1) =
2013
1
2014
1
2015
0
xxx

Free download pdf