Mathematics_Today_-_October_2016

(backadmin) #1
⇒ (x – 2014) (x – 2015) + (x – 2015) (x – 2013)
+ (x – 2013)(x – 2014) = 0 ⇒ g(x) = 0 [say]
∴ g(2013) = (–1)(–2) = 2 > 0, g(2014) = (– 1)(1) = –1 < 0
and g(2015) = (2)(1) = 2 > 0
As g(x) changes sign between 2013 & 2014, 2014 &
2015, the equation g(x) = 0 has roots between them.
∴ Both roots are real and different.


  1. (d) : Let sin
    cos


sin
cos

sin
cos

x
A

y
B

z
C

===k

∴ sin x = kcos A ...(i)

∴ −



⎜⎜



⎟⎟= −−+



∑ sin cos ⎜
sin cos

cos sin
sin cos

(^22) Ax 112 2
xA
Ax
⎜⎜ xA


⎟⎟
= −



⎜⎜


⎟⎟


sin cos
sin cos
(^22) xA
xA
= ∑(sinx + cos A) = ∑sinx + ∑cos A


()+ ()−

∑∑ ∑∑
∑∑
sin cos sin cos
sin cos
xAxA
xA


()−()

∑∑

sin cos
(sin cos )
xA
xA
22



  1. (d) : xxxr px
    r


r r
r

() 1 2
00

++ =
=


=


∑∑
⇒ (1 + x + x^2 )(1 + x + x^2 + x^3 +... to ∞)
= p 0 + p 1 x + p 2 x^2 + p 3 x^3 + ... to ∞

⇒ ++


⎝⎜


⎠⎟

( )^1 =+ + ++...1 ∞
1

2
01 2
xx^2
x

ppxpx to

⇒ ppxpx px01 2++ + +^233 ... to∞
= (1–x)–2 (1 – x^3 )
= (1 + 2x + 3x^2 + 4x^3 + ... to ∞) (1 – x^3 )
∴ On comparing, we get
p 0 = 1, p 1 = 2, p 2 = 3 = p 3 = p 4 = p 5 = ........

∴ =+++++
=

∑pppppr p
r

0123 671
0

671
...

= 1 + 2 + (3 + 3 + 3 + ... to 670 terms)
= 3 × 671 = 2013


  1. (b) : Let I dx
    xx


=
∫(tan) 1 + 2

=
+

= −−
∫ ∫ +

cot
(cot )

()
(cot )

2
2

2
2

xdx 1
xx

xdx
xx

cosec

=− +
+

=
+
∫dx x x + ⇒ =
xxxx

(cot) cfx x
(cot) cot
2 1 () cot


  1. (d) : For non-trivial solution, we must have
    sin
    sin
    sin


2
2
2

11
11
11

0

11
11
11

0

α
β
γ

= ⇒ =

p
q
r

(where = sinp^2 αβγ, qrsin , sin )
p
pq
pr

RR

==

⇒− −
−−

=

→−

22

22

11
110
101

0

RR
RRR

1
331

,
→−







⇒ p(q – 1)(r – 1) – (1 – p)(r – 1) + 1{0 – (1 – p)
(q – 1)} = 0
⇒ − +

+

+

()p =
pqr

11
1

1
1

1
1

0



+

+

(^1) =
1
1
1
1
1
2221
sin αβγsin sin
⇒ ++=⇒ +=
⇒ =− <
sec sec sec ∑( tan )
tan
222 2
2
11 1
20
αβγ α
∑ α , which is impoossible



  1. (c) : ... 256 a 1 a 2 a 3 a 4 ≥ ar
    r=





⎜⎜



⎟⎟
1

4 4

∵ 44 aa a a123 4≥a123 4+++a a a


+++
≤⇒≤

aa a a

123 4 (^4) aa a a123 4
4
A.M. G.M.
But, A.M ≥ G.M ⇒ A.M = G.M
⇒ a 1 = a 2 = a 3 = a 4 ...(i)
Also, 502a 1 + 503a 2 + 504a 3 + 505 a 4 = 2014
∴ 2014 a 1 = 2014 ⇒ a 1 = 1 = a 2 = a 3 = a 4
Now, aaaaarr
r
= + + + =+++=


∑ 122 33 44
1
4
1111 4^



  1. (d) : ∵ xyt
    t


xyt
t

22 4 42
2
+=−^11 and +=+

⇒ xy xyt++ =+−
t

44 222 2 1 2
2
and xyt
t

442
2
+=+^1

⇒ x^2 y^2 = –1, which is not possible for x, y ∈ R.
∴ (a), (b) and (c) are not possible.


  1. (a,b,c): ∵ G


G G
abc=== 1
Let θ be the angle between GG

G G
ac& and & bc
∴ cos ==

.
||||

θ.

GG
GG

ac GG
ac

ac ...(i)
Free download pdf