Synthetic Biology Parts, Devices and Applications

(Nandana) #1

128 6 Constitutive and Regulated Promoters in Yeast


94 Blake, W.J., Balázsi, G., Kohanski, M.A., Isaacs, F.J., Murphy, K.F., Kuang, Y.,
Cantor, C.R., Walt, D.R., and Collins, J.J. (2006) Phenotypic consequences of
promoter‐mediated transcriptional noise. Mol. Cell, 24 (6), 853–865.
95 Levo, M., Zalckvar, E., Sharon, E., Dantas Machado, A.C., Kalma, Y., Lotam‐
Pompan, M., Weinberger, A., Yakhini, Z., Rohs, R., and Segal, E. (2015)
Unraveling determinants of transcription factor binding outside the core
binding site. Genome Res., 25 (7), 1018–1029.
96 Curran, K.A., Crook, N.C., Karim, A.S., Gupta, A., Wagman, A.M., and Alper,
H.S. (2014) Design of synthetic yeast promoters via tuning of nucleosome
architecture. Nat. Commun., 5 , Article number 4002. doi: 10.1038/ncomms5002.
97 Garí, E., Piedrafita, L., Aldea, M., and Herrero, E. (1997) A set of vectors with a
tetracycline‐regulatable promoter system for modulated gene expression in
Saccharomyces cerevisiae. Ye a s t, 13 (9), 837–848.
98 Redden, H. and Alper, H.S. (2015) The development and characterization of
synthetic minimal yeast promoters. Nat. Commun., 6 , 7810.
99 Khalil, A.S., Lu, T.K., Bashor, C.J., Ramirez, C.L., Pyenson, N.C., Joung, J.K.,
and Collins, J.J. (2012) A synthetic biology framework for programming
eukaryotic transcription functions. Cell, 150 (3), 647–658.
100 McIsaac, R.S., Oakes, B.L., Wang, X., Dummit, K.A., Botstein, D., and Noyes,
M.B. (2013) Synthetic gene expression perturbation systems with rapid,
tunable, single‐gene specificity in yeast. Nucleic Acids Res., 41 (4), e57.
101 Sharon, E., Kalma, Y., Sharp, A., Raveh‐Sadka, T., Levo, M., Zeevi, D., Keren, L.,
Yakhini, Z., Weinberger, A., and Segal, E. (2012) Inferring gene regulatory logic
from high‐throughput measurements of thousands of systematically designed
promoters. Nat. Biotechnol., 30 (6), 521–530.
102 Ottoz, D.S., Rudolf, F., and Stelling, J. (2014) Inducible, tightly regulated and
growth condition‐independent transcription factor in Saccharomyces
cerevisiae. Nucleic Acids Res., 42 (17), e130.
103 Murphy, K.F., Balázsi, G., and Collins, J.J. (2007) Combinatorial promoter
design for engineering noisy gene expression. Proc. Natl. Acad. Sci. U.S.A.,
104 (31), 12 726–12 731.
104 Estojak, J., Brent, R., and Golemis, E.A. (1995) Correlation of two‐hybrid
affinity data with in vitro measurements. Mol. Cell. Biol., 15 (10), 5820–5829.
105 Ellis, T., Wang, X., and Collins, J.J. (2009) Diversity‐based, model‐guided
construction of synthetic gene networks with predicted functions. Nat.
Biotechnol., 27 (5), 465–471.
106 McIsaac, R.S., Gibney, P.A., Chandran, S.S., Benjamin, K.R., and Bostein, D. (2014)
Synthetic biology tools for programming gene expression without nutritional
perturbations in Saccharomyces cerevisiae. Nucleic Acids Res., 42 (6), e68.
107 Brent, R. and Ptashne, M. (1984) A bacterial repressor protein or a yeast
transcriptional terminator can block upstream activation of a yeast gene.
Nature, 312 (5995), 612–615.
108 Golemis, E.A. and Brent, R. (1992) Fused protein domains inhibit DNA
binding by LexA. Mol. Cell. Biol., 12 (7), 3006–3014.
109 Ruden, D.M., Ma, J., Li, Y., Wood, K., and Ptashne, M. (1991) Generating yeast
transcriptional activators containing no yeast protein sequences. Nature,
350  (6315), 250–252.
Free download pdf