1178 28 The Structure of Solids, Liquids, and Polymers
EXAMPLE28.8
a.Find the electronic contribution to the heat capacity of copper at 15 K, using the same
assumptions and data as in Example 28.7.
b.Find the ratio of the electronic contribution to the classical prediction of the electronic
contribution.
c.Find the ratio of the electronic contribution to the lattice vibration contribution for copper
at 15 K, using the Debye theory result with the Debye temperature 315 K.
Solution
a.From Example 28.7,εF0 1. 129 × 10 −^18 J.εFεF0(
1 −
(πkBT)^2
12 ε^2 F0) 1. 129 × 10 −^18 J(
1 −
[π(1. 38 × 10 −^23 JK−^1 )(15 K)]^2
12(1. 129 × 10 −^18 J)^2) 1. 129 × 10 −^18 JThis value is not significantly different fromεF0. From Equation (28.3-15) the electronic
contribution to the heat capacity per unit volume isCelecπ^2 NkB^2 T
2 εF
π^2 (8. 49 × 1028 m−^3 )(1. 38 × 10 −^23 JK−^1 )^2 (15 K)
2(1. 129 × 10 −^18 J) 1. 06 × 103 JK−^1 m−^3Cm,elec
(1. 06 × 103 JK−^1 m−^3 )(0.063546 kg mol−^1 )
8960 kg m−^3 0 .00753 J K−^1 mol−^1b.Ratio
π^2 kBT
3 εF
π^2 (1. 38 × 10 −^23 JK−^1 )(15 K)
3(1. 129 × 10 −^18 J) 0. 0060c.At 15 K,CDebye9 NkB
n^3 D∫νD0(
hν
kBT) 2
ehν/kBTν^2
(
ehν/kBT− 1) 2 dν^3 NkBD(
θD
T)uD
θD
T
315 K
15 K 21. 0The integral must be evaluated numerically or by use of tabulated values.aThe value of the
Debye function for 15 K isD(21.0)3
u^3 D∫ 21. 00u^4eu
(eu− 1 )^2du3
(21.0)^3(26.0) 0. 0084CV,m,Debye 3 RD3(8.3145 J K−^1 mol−^1 )(0.0084) 0 .21JK−^1 mol−^1