Cambridge Additional Mathematics

(singke) #1
Answers 489

EXERCISE 12B.3
1a 3 A b O c ¡C dO e 2 A+2B
f¡A¡B g ¡ 2 A+C h 4 A¡B i 3 B
2aX=A¡B bX=C¡B c X=2C¡ 4 B
dX=^12 A eX=^13 B f X=A¡B
gX=2C hX=^12 B¡A i X=^14 (A¡C)

3aX=

³
36
918

́
bX=

μ 1
2 ¡
1
4
3
4

5
4


cX=

μ
¡ 1 ¡ 6
1 ¡^12


EXERCISE 12C.1

1a(11) b(22) c (16) 2b(wxyz)

0
B
B
B
@

1 4 1 4 1 4 1 4
1
C
C
C
A

3aP=

¡
27 35 39

¢
, Q=

Ã
4
3
2

!

btotal cost=

¡
27 35 39

¢

Ã
4
3
2

!
=$ 291

4aP=

¡
10 6 3 1

¢
, N=

0
@

3
2
4
2

1
A

btotal points=

¡
10631

¢

0
@

3
2
4
2

1
A=56points

EXERCISE 12C.2
1 Number of columns inAdoes not equal number of rows inB.
2am=n b 2 £ 3 cBhas 3 columns, Ahas 2 rows
3adoes not exist b(28 29)

4a(8) b

Ã
20 3
8012
40 6

!

5a(3 5 3) b

Ã
¡ 2
1
1

!

6aQ=

Ã
32 24
25 16
13 9

!
bP=

³ 1 : 19
1 : 55

́

cQP=

Ã
32 24
25 16
13 9

!
³ 1 : 19
1 : 55

́
=

Ã
75 : 28
54 : 55
29 : 42

!

It represents the total value of sales for each pen colour.
d$ 75 :28 +$ 54 :55 +$ 29 :42 =$ 159 : 25
7aC=

³
12 : 5
9 : 5

́
N=

³
2375 5156
2502 3612

́

b

³
78 669: 5
65 589

́
income from day 1
income from day 2 c $144 258:^50

8aR=

Ã
11
12
23

!
bP=

³ 7319
6222

́

c

³
48 70
52 76

́
di$ 48 ii $ 76
eThe elements ofPRtell us that, if all the items are to be
bought at one store, it is cheapest to do so at store A for
both you and your friend. However, the cheapest way is to
buy paint from store A, and hammers and screwdrivers from
store B.
EXERCISE 12C.3
1aA^2 +A b B^2 +2B cA^3 ¡ 2 A^2 +A
dA^3 +A^2 ¡ 2 A eAC+AD+BC+BD
fA^2 +AB+BA+B^2 gA^2 ¡AB+BA¡B^2
hA^2 +2A+I i 9 I¡ 6 B+B^2
2aA^3 =3A¡ 2 I, A^4 =4A¡ 3 I
bB^3 =3B¡ 2 I, B^4 =6I¡ 5 B, B^5 =11B¡ 10 I
cC^3 =13C¡ 12 I, C^5 = 121C¡ 120 I
3a iI+2A ii 2 I¡ 2 A iii 10 A+6I
bA^2 +A+2I ci¡ 3 A ii ¡ 2 A iii A

4aA^2 =

μ 1
2
1
2
1
2
1
2


bfalse as A(A¡I)=O does not imply that
A=O orA¡I=O

c

³ 00
00

́
,

³ 10
01

́
,

Ã
ab
a¡a^2
b
1 ¡a

!
, b 6 =0

5 For example, A=

³
01
00

́
gives A^2 =

³
00
00

́
.
6aa=3, b=¡ 4 ba=1, b=8
7ap=¡ 2 ,q=1 bA^3 =5A¡ 2 I
cA^4 =¡ 12 A+5I
EXERCISE 12D.1

1a

³ 30
03

́
=3I,

μ
1 ¡ 2
¡^2353


b

³
10 0
010

́
=10I,

³
0 : 20 : 4
¡ 0 : 10 : 3

́

2a¡ 2 b¡ 1 c 0 d 1
3a 26 b 6 c ¡ 1 da^2 +a
4a¡ 3 b¡ 3 c ¡ 12 5 Hint: LetA=

³
ab
cd

́

6a idetA=ad¡bc iidetB=wz¡xy
iii AB=

³
aw+by ax+bz
cw+dy cx+dz

́

iv detAB=(ad¡bc)(wz¡xy)
7adetA=¡ 2 , detB=¡ 1
bidet(2A)=¡ 8 iidet (¡A)=¡ 2
iii det(¡ 3 B)=¡ 9 iv det (AB)=2

8a 141

³
5 ¡ 4
12

́
b

³
10
1 ¡ 1

́
c does not exist

d

³
10
01

́
e 101

³
20
15

́
f does not exist

g¡ 151

³
7 ¡ 2
¡ 4 ¡ 1

́
h 101

³
2 ¡ 4
13

́
i

³
¡ 3 ¡ 1
21

́

9a
1
2 k+6

³
2 ¡ 1
6 k

́
, k 6 =¡ 3 b
1
3 k

³
k 1
03

́
, k 6 =0

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 IB HL OPT
Sets Relations Groups
Y:\HAESE\CAM4037\CamAdd_AN\489CamAdd_AN.cdr Tuesday, 8 April 2014 8:51:13 AM BRIAN

Free download pdf