352 Chapter 12Second-order differential equations. Constant coefficients
equilibrium position, potential energy is converted into kinetic energy and, atx 1 = 10 ,
V 1 = 10 and the kinetic energy is a maximum,T 1 = 1 E.
0 Exercises 22, 23
12.6 The particle in a one-dimensional box
The ‘particle in a one-dimensional box’ is the name given to the system consisting of
a body allowed to move freely along a line of finite length. In quantum mechanics, this
is one of the simplest systems that demonstrate the quantization of energy.
The Schrödinger equation for a particle of mass mmoving in the x-direction is
(12.42)
whereV(x) is the potential energy of the particle at position x, Eis the (constant)
total energy, and ψis the wave function. For the present system the potential-energy
function is (Figure 12.5)
(12.43)
The constant value ofVinside the box ensures that no force acts on the particle
in this region; settingV 1 = 10 means that the energyEis the (positive) kinetic energy
of the particle. The infinite value ofVat the ‘walls’ and outside the box ensures that
the particle cannot leave the box; in quantum mechanics this means that the wave
function is zero at the walls and outside the box.
For the particle within the box, we therefore have the boundary value problem
(12.44)
with boundary conditions
ψ(0) 1 = 1 ψ(l) 1 = 10 (12.45)
Equation (12.44) is identical in form to equation (12.20), or to equation (12.35) for the
harmonic oscillator. Thus, setting
ω (12.46)
2
2
2
=
mE
−=
22
2
2 m
dx
dx
Ex
ψ
ψ
()
()
Vx
xl
x
()=
≤
0
0
for 0
for a
<<
∞nnd xl≥
−+=
22
2
2 m
dx
dx
Vx x E x
ψ
ψψ
()
()() ()
.............................................................................................................................................................................................................................................................................................................................
V=∞ V= 0 V=∞
0 l
x
......
......
.......
......
...
.
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
...............................................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.
Figure 12.5