15.6 Fourier transforms 433
and the coefficientsA
n
in (15.56) are identical to the Fourier coefficientsb
n
given by
(15.54). In addition, the initial velocity of the string is zero at all points along its
length, so that
(15.59)
and all the coefficientsB
n
in (15.56) are zero. It follows that, for the given initial
conditions, the motion of the string is given by the wave function
(15.60)
where, by equation (14.96), ω
n
1 = 1 nπv 2 lwith vconstant. The function (15.60) is
periodic in twith period τ 1 = 12 π 2 ω
1
1 = 12 l 2 v, and Figure 15.11 shows how the string
behaves over the first quarter of a period; the graphs have been obtained from the
25-term approximation to the wave function (terms up ton 1 = 149 ).
This startling behaviour can be understood by a consideration of the forces acting
at each point on the string. Because the tension is uniform throughout, no net force
acts at a point on a straight-line section. The essential shape of the string is therefore
maintained, with the motion determined by the instantaneous force acting at the two
points where the gradient changes (or at the single point at the turning points of the
motion).
0 Exercise 14
15.6 Fourier transforms
In Section 15.4 we were concerned with the use of Fourier series for the representation
of functions that are periodic, but several important applications of Fourier analysis
in the physical sciences involve functions that are not periodic. The Fourier analysis
of nonperiodic functions is achieved by letting the width of the base interval become
indefinitely large (l 1 → 1 ∞), and by transforming the Fourier series into an infinite
integral, called a Fourier integral or a Fourier transform.
yxt
Ax
l
t
x
l
( ),= sin cos −sin cos t+
81
9
31
25
2
13
π
ππ
ωωssin cos
5
5
πx
l
ωt−
t
y
t
gx
=
∂
∂
==
0
() 0
t=0
••
........
........
.......
.........
.......
........
.........
.......
........
........
........
........
........
........
.......
.........
.......
........
........
........
........
........
........
.......
.........
.......
...........
........
........
........
.......
.........
.......
........
.........
.......
........
........
........
........
........
........
.......
.........
.......
........
........
........
........
........
........
.......
................................................................................................
t=τ/ 16
••
........
........
.......
.........
........
.......
.........
.......
........
........
........
.......
.........
........
.......
.........
.......
........
........
.........
................................................................................
.........
........
........
.......
.........
.......
........
.........
.......
........
........
........
.......
.........
.......
........
........
........
........
.......
.
........................................................................................
t=τ/ 8
••
........
........
.......
.........
.......
........
.........
.......
........
........
........
........
........
........................................................................................................................................................................
.........
.......
........
........
........
.......
.........
........
.......
.........
.......
........
................................................................................................
t=3τ/ 16
••
......
.........
.......
........
.........
.......
..................................................................................................................................................................................................................................................................
........
........
........
.......
.........
..............................................................................................
t=τ/ 4
••
..............................................................................................................................................................................................................................................................................................................................................................................................................................
Figure 15.11