∫∞0sinhpx
sinhqxdx=π
2 qtan(πp
2 q), |p|< q∫∞0coshax−coshbx
sinhπx dx= ln∣∣
∣∣
∣cos 2 b
cosa 2∣∣
∣∣
∣, −π < b < a < π∫∞0sinhpx
sinhqxcosmx dx=π
2 qsinπpq
cosπpq + coshπmq , q >^0 , p(^2) < q 2
147.
∫∞
0
sinhpx
coshqxsinmx dx=
π
q
sinpπ 2 qsinhmπ 2 q
cospπq + coshmπq
148.
∫∞
0
coshpx
coshqxcosmx dx=
π
q
cospπ 2 qcoshmπ 2 q
cospπq + coshmπq
Miscellaneous Integrals
149.
∫x
0
ξλ−^1 [1−ξμ]νdξ=x
λ
λ F(−ν,
λ
μ;
λ
μ+ 1;x
μ) See hypergeometric function
150.
∫π
0
cos(nφ−xsinφ)dφ=π Jn(x)
151.
∫a
−a
(a+x)m−^1 (a−x)n−^1 dx= (2a)m+n−^1 Γ(Γ(mm)Γ(+nn))
- Iff′(x)is continuous and
∫∞
1f(x)−f(∞)
x dxconverges, then
∫∞
0f(ax)−f(bx)
x dx= [f(0)−f(∞)] lnb
a- Iff(x) =f(−x)so thatf(x)is an even function, then
∫∞
0f(
x−x^1)
dx=∫∞0f(x)dx- Elliptic integral of the first kind
∫θ
0√ dθ
1 −k^2 sin^2 θ=F(θ, k), 0 < k < 1- Elliptic integral of the second kind
∫θ
0√
1 −k^2 sin^2 θ dθ=E(θ, k)- Elliptic integral of the third kind
∫θ
0dθ
(1 +nsin^2 θ)√
1 −k^2 sin^2 θ= Π(θ, k, n)Appendix C