1000 Solved Problems in Modern Physics

(Tina Meador) #1
422 7 Nuclear Physics – I

Usingλ 238 = 1 /τ 238 = 1 / 6. 52 × 109 ,λ 235 = 1 /τ 235 = 1 / 1. 02 × 109
And solving (3) we get the age of the earth as 5. 26 × 109 years
7.99 Number of Th atoms in 2μgis
N=N 0 W/A= 6. 02 × 1023 × 2 × 10 −^6 / 224 = 5. 375 × 1015
λ= 0. 693 /(3. 64 × 86 ,400)= 2. 2 × 10 −^6
ActivityA=|dN/dλ|=Nλ=(5. 375 × 1015 )(2. 2 × 10 −^6 )= 1. 183 ×
1010 /s
=(1. 188 × 1010 / 3. 7 × 1010 )ci= 0 .319 ci
7.100 1 rad=100 ergs g−^1
Energy received=(40)(100)(20× 103 )/ 107 J
=8J
= 8 / 4. 18 = 1 .91 Cal
7.101 LetVcm^3 be the volume of blood, Initial activity is 16, 000 /Vper minute
per cm^3 .0. 8 =^16 ,V^000 exp(− 0. 693 × 30 /15)
=^4 ,^123 V
∴V=5000 cm^3

7.3.10 Alpha-Decay ....................................


7.102λ 1 = 1021 exp(− 2 πzZ 1 e^2 /v 1 )
λ 2 =^1021 exp(−^2 πzZ 2 e^2 /v 2 )
Givenλ 1 =λ 2
Z 1 /


E 1 =Z 2 /


E 2

E 2 =E 1 Z 22 /Z 12 = 5 .3(80/82)^2 = 5 .04 MeV
Thus energy from the second nuclei is 5.04 MeV.

7.103 The energy required to force anα-particle(classically) into a nucleus of
chargeZeis equal to the potential energy at the barrier height and is given by
E=zZe^2 / 4 πε 0 R.
This is barely possible whenαparticle and the Uranium nucleus will just
touch each other and the kinetic energy of the bombarding particle is entirely
converted into potential energy.
R=R 1 +R 2 =r(A
1 / 3
1 +A^2


1 / (^3) )
= 1 .2(4^1 /^3 + 2381 /^3 )= 9 .34 fm
E= 1. 44 zZ/R= 1. 44 × 2 × 92 / 9. 34 = 28 .37 MeV
7.104 Geiger–Nuttal law is
logλ=klogx+c
wherekandcare constants,λis the decay constant andxis the range
log(0. 693 /T)=klogx+c
k logx+logT=log 0. 693 −c=c 1 (1)

Free download pdf