70 1 Mathematical Physics
=
√
2
πx[
1 −
x^2
2!+
x^4
4!−···
]
=
√
2
πxcosx1.79 The normalization of Legendre polynomials can be obtained byl–foldinte-
gration by parts for the conventional form
Pl(x)=1
2 ll!dl
dxl(x^2 −1)l (Rodrigues’s formula)
∫+ 1− 1[Pl(x)]^2 dx=(
1
2 ll!) 2 ∫+ 1
− 1[
dl(x^2 −1)l
dxl][
dl(x^2 −1)l
dxl]
dx=(−1)l(1
2 ll!)^2
∫+ 1
− 1[
d^2 l(x^2 −1)
dx^2 l]
(x^2 −1)ldx=(−1)l(
(2l)!
2 ll!) 2 ∫+ 1
− 1(x^2 −1)ldx=2
2 l+ 1
Putl=nto get the desired result.
The orthogonality can be proved as follows. Legendre’s differential equation
d
dx[
(1−x^2 )dPn(x)
dx]
+n(n+1)Pn(x)=0(1)can be recast as
[(1−x^2 )Pn′]′=−n(n+1)Pn(x)(2)
[(1−x^2 )Pm′]′=−m(m+1)Pm(x)(3)
Multiply (2) byPmand (3) byPnand subtract the resulting expressions.
Pm[(1−x^2 )Pn′]′−Pn[(1−x^2 )Pm′]′=[m(m+1)−n(n+1)]PmPn (4)
Now, LHS of (4) can be written asPm[(1−x^2 )Pn′]′−Pn[(1−x^2 )Pm′]′
=Pm[(1−x^2 )Pn′]′+Pm′[(1−x^2 )Pn′]−Pn[(1−x^2 )Pm′]−Pn[(1−x^2 )Pm′]′(4) can be integrated
d
dx[(1−x^2 )(PmPn′−PnPm′)=[m(m+1)−n(n+1)]PmPn(1−x^2 )(
PmPn′−PnPm′)
|^1 − 1 =[m(m+1)−n(n+1)]∫ 1
− 1PmPndxSince (1−x^2 ) vanishes atx =±1, the LHS is zero and the orthogonality
follows.
∫ 1− 1Pm(x)Pn(x)dx=0;m
=n