412 Higher Engineering Mathematics
Now try the following exerciseExercise 163 Further problems on
integration using partial fractions with
repeated linear factors
In Problems 1 and 2, integrate with respect
tox.1.∫
4 x− 3
(x+ 1 )^2dx
[
4ln(x+ 1 )+7
(x+ 1 )+c]2.∫
5 x^2 − 30 x+ 44
(x− 2 )^3dx
⎡
⎢
⎢
⎣5ln(x− 2 )+10
(x− 2 )
−2
(x− 2 )^2+c⎤
⎥
⎥
⎦In Problems 3 and 4, evaluate the definite integrals
correct to 4 significant figures.3.∫ 21x^2 + 7 x+ 3
x^2 (x+ 3 )[1.663]4.∫ 7618 + 21 x−x^2
(x− 5 )(x+ 2 )^2dx [1.089]- Show that
∫ 10(
4 t^2 + 9 t+ 8
(t+ 2 )(t+ 1 )^2)
dt= 2. 546 ,correct to 4 significant figures.41.4 Worked problemson
integration using partial
fractions with quadratic factors
Problem 8. Find∫
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )dx.It was shown in Problem 9, page 18:3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )≡2
x+1
x^2+3 − 4 x
(x^2 + 3 )Thus∫
3 + 6 x+ 4 x^2 − 2 x^3
x^2 (x^2 + 3 )dx≡∫(
2
x+1
x^2+( 3 − 4 x)
(x^2 + 3 ))
dx=∫{
2
x+1
x^2+3
(x^2 + 3 )−4 x
(x^2 + 3 )}
dx∫
3
(x^2 + 3 )dx= 3∫
1
x^2 +(√
3 )^2dx=3
√
3tan−^1x
√
3, from 12, Table 40.1, page 399.∫
4 x
x^2 + 3dxis determined using the algebraic substi-
tutionu=(x^2 + 3 ).Hence∫ {
2
x+1
x^2+3
(x^2 + 3 )−4 x
(x^2 + 3 )}
dx=2lnx−1
x
+3
√
3tan−^1x
√
3−2ln(x^2 + 3 )+c=ln(
x
x^2 + 3) 2
−1
x+√
3tan−^1x
√
3+cProblem 9. Determine∫
1
(x^2 −a^2 )dx.Let1
(x^2 −a^2 )≡A
(x−a)+B
(x+a)≡A(x+a)+B(x−a)
(x+a)(x−a)
Equating the numerators gives:1 ≡A(x+a)+B(x−a)Let x=a,thenA=1
2 a,andletx=−a,thenB=−1
2 aHence∫
1
(x^2 −a^2 )dx≡∫
1
2 a[
1
(x−a)
−1
(x+a)]
dx