Integration usingpartial fractions 413
=1
2 a[ln(x−a)−ln(x+a)]+c=1
2 aln(
x−a
x+a)
+cProblem 10. Evaluate
∫ 433
(x^2 − 4 )dx,correct to 3 significant figures.From Problem 9,
∫ 433
(x^2 − 4 )dx= 3[
1
2 ( 2 )ln(
x− 2
x+ 2)] 43=3
4[
ln2
6−ln1
5]=3
4ln5
3= 0. 383 ,correct to 3
significant figures.Problem 11. Determine∫
1
(a^2 −x^2 )dx.Using partial fractions, let1(a^2 −x^2 )
≡1
(a−x)(a+x)≡A
(a−x)+B
(a+x)≡A(a+x)+B(a−x)
(a−x)(a+x)Then 1≡A(a+x)+B(a−x)Letx=athenA=1
2 a.Letx=−athenB=1
2 aHence∫
1
(a^2 −x^2 )dx=∫
1
2 a[
1
(a−x)+1
(a+x)]
dx=1
2 a[−ln(a−x)+ln(a+x)]+c=1
2 aln(
a+x
a−x)
+cProblem 12. Evaluate
∫ 205
( 9 −x^2 )dx,correct to 4 decimal places.From Problem 11,
∫ 205
( 9 −x^2 )dx= 5[
1
2 ( 3 )ln(
3 +x
3 −x)] 20=5
6[
ln5
1−ln1]= 1. 3412 ,correct to 4 decimal places.Now try the following exerciseExercise 164 Further problems on
integration using partial fractions with
quadratic factors- Determine
∫
x^2 −x− 13
(x^2 + 7 )(x− 2 )dx.
⎡
⎣ln(x(^2) + 7 )+√^3
7
tan−^1
x
√
7
−ln(x− 2 )+c
⎤
⎦
In Problems 2 to 4, evaluate the definite integrals
correct to 4 significant figures.
2.
∫ 6
5
6 x− 5
(x− 4 )(x^2 + 3 )
dx [0.5880]
3.
∫ 2
1
4
( 16 −x^2 )
dx [0.2939]
4.
∫ 5
4
2
(x^2 − 9 )
dx [0.1865]
- Show that
∫ 21(
2 +θ+ 6 θ^2 − 2 θ^3
θ^2 (θ^2 + 1 ))
dθ=1.606, correct to 4 significant figures.