Chapter 42
The t = tan
θ
2
substitution
42.1 Introduction
Integrals of the form
∫
1
acosθ+bsinθ+cdθ,wherea,bandcare constants, may be determined by usingthe
substitutiont=tan
θ
2. The reason is explained below.
If angleAin the right-angled triangleABCshown in
Fig. 42.1 is made equal to
θ
2then, since tangent=
opposite
adjacent,ifBC=tandAB=1, then tanθ
2=t.By Pythagoras’ theorem,AC=
√
1 +t^2
A^2
1
B 11 t^2CtFigure 42.1
Therefore sin
θ
2=t
√
1 +t^2and cosθ
2=1
√
1 +t^2Sincesin2x=2sinxcosx (from double angle formulae,
Chapter 17), then
sinθ=2sinθ
2cosθ
2= 2(
t
√
1 +t^2)(
t
√
1 +t^2)i.e. sinθ=2 t
( 1 +t^2 )(1)Since cos2x=cos^2θ
2−sin^2θ
2=(
1
√
1 +t^2) 2
−(
t
√
1 +t^2) 2i.e. cosθ=
1 −t^2
1 +t^2(2)Also, sincet=tanθ
2,
dt
dθ=1
2sec^2θ
2=1
2(
1 +tan^2θ
2)
from trigonometric
identities,i.e.dt
dθ=1
2( 1 +t^2 )from which, dθ=2dt
1 +t^2(3)Equations (1), (2) and (3) are used to determine
integrals of the form∫
1
acosθ+bsinθ+cdθwhere
a,borcmay be zero.