52 4 Eigen Values and Vectors
A =
an ai2 ai3
021 <J22 0,23
^31 «32 «33
Volume=det(A)
Fig. 4.1. |det A| = Volume(P).
4.1.2 Properties
- The determinant of J is 1.
Example 4.1.8
10
0 1 1. - The determinant is a linear function of any row, say the first row.
Example 4.1.9
det a b
c d
a b
c d
= ad — cb.
ta tb
c d
= tad — ted = t
a b
c d
- If A has a zero row, then det .4 = 0.
Example 4.1.10
00
c d
= 0. - The determinant changes sign when two rows are exchanged.
Example 4.1.11
c d — cb — ad
a b
a b
c d
- The elementary row operations of subtracting a multiple of one row from
another leaves the determinant unchanged.
Example 4.1.12
a — acb — ad
c d
(ad — acd) — (be — acd) bc =
a b
c d
- If two rows are equal (singularity!), then det A = 0.
Example 4.1.13
ab
h=o.
a b