4.1 Determinants 53
- det AT = det A.
Example 4.1.14
a c
bd
= ad — cb
a b
c d
- If A is triangular, then det A = Yi7=i a" (det/ = 1).
Example 4.1.15
a b
Od
= ad, «0
c d
= ad.
- A,B € Rnxn, nonsingular, det(45) = (det A)(det B).
Example 4.1.16
a b
c d
ef
9 h
= (ad — cb)(eh — gf) = adeh — adgf — cbeh + cbgf.
ae + bg af + bh = (ae + bg){cf + dh) - (af + bh)(ce + dg)
ce + dg cf + dh
= aecf + aedh + bgcf + bgdh — afce — afdg — bhce — bhdg
= adeh — adgf — cbeh + cbgf.
- Let A be nonsingular, A = P-lLDU. Then,
det A = det P_1 det L det D det U — ±(product of pivots).
The sign ± is the determinant of P_1 (or P) depending on whether the
number of row exchanges is even or odd. We know det L = det U = 1 from
property 7.
Example 4.1.17 By one Gaussian elimination step, we have
a b
c d
1 0
a 1
a 0
n ad—be a
o l
since
a b
c d -»
a b
Od-^
. Thus,
a b
c d
= ad — bc — det D.
- det A = anAii + aiiAa + ••• + ainAin (property 1!) where A^'s are
cofactors
Atj = (-l)i+i det Mij
where the minor Mij is formed from A by deleting row i and column j.
Example 4.1.18
an «i2 ai3
O21 022 ^23
0-31 0-32 0-33
an
0,22 023
132 ^33
ai2
^21 a 23
^31 a 33
+
ai3
O21 022
&31 «32
= 011(022033 - 023032) + 012(023031 - 021033) + 013(021032 - o 22 a 3 i)
: 011022033 + 012023031 + 013021032 — 011023032 — 012021033 — 013022031.