4.5 The Complex case 63
and if we generalize to the matrices
eM = I + At +
{At)^2 (At)^3
2! 3!
If we take the derivative of both sides, we have
+ •
deM T A A^2 {2t) A^3 {it^2 )
= I + A + „. + +—)^—L + -
dt
= A
2! 3!
' , (At)^2 (At)^3
I + At+ ±-J-2! + ^J- + ••• 3!
= Ae At
UA = SAS-^1 ,
At r OAO-I SA^2 S-H^2 SA^3 S~H^3
eAt = / + SAS x + -. + -. +
2!
' , {At)^2 {At)^3
i+At+^-^- + ^-T'—+•
3!
S"^1 = SeAtS~^1.
2! 3!
Thus, we have the following theorem.
Theorem 4.4.8 // A can be diagonalized as( A = SAS-1), then ^ — Au
has the solution u(i) = eAtuo = SeAtS~^1 uo, or equivalently u(i) = aieAl'vi +
- • • + aneXntvn, where a — 5 _1«o-
4.5 The Complex case
In this section, we will investigate Hermitian and unitary matrices. The com-
plex field C is denned over complex numbers (of the form x+iy where x,y E.R
and i^2 — —1) with the following operations:
{a + ib) + {c + id) = {{a + c) + i(b+d)) (a + ib)(c + id) = {{ac-bd) + i(cb+ad)).
Definition 4.5.1 The complex conjugate ofa + ibsC is a + ib = a — ib. See
Figure 4-2.
Properties:
i. (a + ib){c + id) — {a + ib)(c + id),
ii. {a + ib) + (c + id) — {a + ib) + (c + id),
Hi. (a + ib)a + ib = a^2 + b^2 — r^2 where r is called modulus of a + ib.
We have a = y/a^2 + b^2 cos 9 and b = \/a^2 + b^2 sin 9 and
a + ib = \]a? + b^2 {cos9 + ism 9) = re^10 (Polar Coordinates),
where re1,6 — cos 9 + i sin 9.