7.6 Energy Method for the Bending of Thin Plates 247ItfollowsimmediatelythatthepotentialenergyoftheNxyloadsis
Vxy=−1
2
∫a0∫b02 Nxy∂w
∂x∂w
∂ydxdy (7.44)andforthecompletein-planeloadingsystemwehave,fromEqs.(7.42),(7.43),and(7.44),apotential
energyof
V=−
1
2
∫a0∫b0[
Nx(
∂w
∂x) 2
+Ny(
∂w
∂y) 2
+ 2 Nxy∂w
∂x∂w
∂y]
dxdy (7.45)Wearenowinapositiontosolveawiderangeofthin-plateproblemsprovidedthatthedeflectionsare
small,obtainingexactsolutionsifthedeflectedformisknownorapproximatesolutionsifthedeflected
shapehastobe“guessed.”
ConsideringtherectangularplateofSection7.3,simplysupportedalongallfouredgesandsubjected
toauniformlydistributedtransverseloadofintensityq 0 ,weknowthatitsdeflectedshapeisgivenby
Eq.(7.27),namely,
w=∑∞
m= 1∑∞
n= 1Amnsinmπx
asinnπy
bThetotalpotentialenergyoftheplateis,fromEqs.(7.37)and(7.39),
U+V=
∫a0∫b0{
D
2
[(
∂^2 w
∂x^2+
∂^2 w
∂y^2) 2
− 2 ( 1 −ν){
∂^2 w
∂x^2∂^2 w
∂y^2−
(
∂^2 w
∂x∂y) 2 }]
−wq 0}
dxdy(7.46)
SubstitutinginEq.(7.46)forwandrealizingthat“cross-product”termsintegratetozero,wehave
U+V=
∫a0∫b0{
D
2
∑∞
m= 1∑∞
n= 1A^2 mn[
π^4(
m^2
a^2+
n^2
b^2) 2
sin^2mπx
asin^2nπy
b− 2 ( 1 −ν)m^2 n^2 π^4
a^2 b^2(
sin^2mπx
asin^2nπy
b−cos^2mπx
acos^2nπy
b)]
−q 0∑∞
m= 1∑∞
n= 1Amnsinmπx
asinnπy
b}
dxdy