Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
7.6 Energy Method for the Bending of Thin Plates 247

ItfollowsimmediatelythatthepotentialenergyoftheNxyloadsis


Vxy=−

1

2

∫a

0

∫b

0

2 Nxy

∂w
∂x

∂w
∂y

dxdy (7.44)

andforthecompletein-planeloadingsystemwehave,fromEqs.(7.42),(7.43),and(7.44),apotential
energyof


V=−

1

2

∫a

0

∫b

0

[

Nx

(

∂w
∂x

) 2

+Ny

(

∂w
∂y

) 2

+ 2 Nxy

∂w
∂x

∂w
∂y

]

dxdy (7.45)

Wearenowinapositiontosolveawiderangeofthin-plateproblemsprovidedthatthedeflectionsare
small,obtainingexactsolutionsifthedeflectedformisknownorapproximatesolutionsifthedeflected
shapehastobe“guessed.”
ConsideringtherectangularplateofSection7.3,simplysupportedalongallfouredgesandsubjected
toauniformlydistributedtransverseloadofintensityq 0 ,weknowthatitsdeflectedshapeisgivenby
Eq.(7.27),namely,


w=

∑∞

m= 1

∑∞

n= 1

Amnsin

mπx
a

sin

nπy
b

Thetotalpotentialenergyoftheplateis,fromEqs.(7.37)and(7.39),


U+V=

∫a

0

∫b

0

{

D

2

[(

∂^2 w
∂x^2

+

∂^2 w
∂y^2

) 2

− 2 ( 1 −ν)

{

∂^2 w
∂x^2

∂^2 w
∂y^2


(

∂^2 w
∂x∂y

) 2 }]

−wq 0

}

dxdy

(7.46)

SubstitutinginEq.(7.46)forwandrealizingthat“cross-product”termsintegratetozero,wehave


U+V=

∫a

0

∫b

0

{

D

2

∑∞

m= 1

∑∞

n= 1

A^2 mn

[

π^4

(

m^2
a^2

+

n^2
b^2

) 2

sin^2

mπx
a

sin^2

nπy
b

− 2 ( 1 −ν)

m^2 n^2 π^4
a^2 b^2

(

sin^2

mπx
a

sin^2

nπy
b

−cos^2

mπx
a

cos^2

nπy
b

)]

−q 0

∑∞

m= 1

∑∞

n= 1

Amnsin

mπx
a

sin

nπy
b

}

dxdy
Free download pdf