Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
2.6 Bending of an End-Loaded Cantilever 57

(2) the distribution of shear and direct stresses at the built-in end is the same as those given by
Eqs.(iii)
(3) allsectionsofthebeam,includingthebuilt-inend,arefreetodistort
Inpracticalcasesnoneoftheseconditionsissatisfied,butbyvirtueofSt.Venant’sprinciplewemay
assume that the solution is exact for regions of the beam away from the built-in end and the applied
load. For many solid sections, the inaccuracies in these regions are small. However, for thin-walled
structures,withwhichweareprimarilyconcerned,significantchangesoccur.
We now proceed to determine the displacements corresponding to the stress system of Eqs. (iii).
Applying the strain–displacement and stress–strain relationships, Eqs. (1.27), (1.28), and (1.47), we
have


εx=

∂u
∂x

=

σx
E

=−

Pxy
EI

(iv)

εy=

∂v
∂y

=−

νσx
E

=

νPxy
EI

(v)

γxy=

∂u
∂y

+

∂v
∂x

=

τxy
G

=−

P

8 IG

(

b^2 − 4 y^2

)

(vi)

IntegratingEqs.(iv)and(v)andnotingthatεxandεyarepartialderivativesofthedisplacements,we
find


u=−

Px^2 y
2 EI

+f 1 (y) v=

νPxy^2
2 EI

+f 2 x (vii)

wheref 1 (y)andf 2 (x)areunknownfunctionsofxandy.SubstitutingthesevaluesofuandvinEq.(vi)



Px^2
2 EI

+

∂f 1 (y)
∂y

+

νPy^2
2 EI

+

∂f 2 (x)
∂x

=−

P

8 IG

(

b^2 − 4 y^2

)

Separatingthetermscontainingxandyinthisequationandwriting


F 1 (x)=−

Px^2
2 EI

+

∂f 2 (x)
∂x

F 2 (y)=

νPy^2
2 EI


Py^2
2 IG

+

∂f 1 (y)
∂y

wehave


F 1 (x)+F 2 (y)=−

Pb^2
8 IG

Thetermontheright-handsideofthisequationisaconstant,whichmeansthatF 1 (x)andF 2 (y)
mustbeconstants,otherwiseavariationofeitherxorywoulddestroytheequality.DenotingF 1 (x)by
CandF 2 (y)byDgives


C+D=−

Pb^2
8 IG

(viii)
Free download pdf