11 One-Forms and Deformed de Rham Complex 197It can be calculated thatHt=dtd∗t+d∗tdt=dd∗+d∗d+t^2 (df)^2 +t∑
i,j∇^2 (i,j)(f)[ ̃ai, ̃aj∗], (11.13)where (df)^2 =(df,df)x=gij∂x∂fi∂x∂fjand
̃ai(ξ)=dxi∧ξ, ∇^2 (i,j)=∇i∇j−Γijk∇k.As the “potential energy”t^2 (df)^2 of the HamiltonianHtbecomes very
large fort→+∞the eigenfunctions ofHtare concentrated near the critical
points df= 0 and the low-lying eigenvalues ofHtcan be calculated by ex-
panding about the critical points. Taking the Morse coordinatesxiin some
neighbourhoodWof a critical pointP
f(x)=1
2
∑
λi(xi)^2 ,λ 1 =···=λq=− 1 ,λq+1=···=λn=1,whereqis the index of the critical pointP, and introducing a Riemmanian
metricgijonMnsuch thatxiare Euclidean coordinates forgijinWone can
locally evaluate the HamiltonianHt:
Ht=∑
i(
−
∂^2
∂xi^2+t^2 xi
2
+tλi[ ̃ai, ̃ai∗])
. (11.14)
The operator
Hi=−∂^2
∂xi^2+t^2 xi2is the Hamiltonian of the simple harmonic oscillator and it has the following
set of eigenvalues
t(1 + 2Ni),Ni=0, 1 , 2 ,...with simple multiplicities. The operatorHicommutes with [ ̃ai,a ̃i∗] and the
eigenvalues of the last operator are equal to±1:
[ ̃ai, ̃ai∗](ψ(x)dxi^1 ∧...∧dxip)={
ψ(x)dxi^1 ∧···∧dxip,i∈(i 1 ,...,ip),
−ψ(x)dxi^1 ∧···∧dxip,i/∈(i 1 ,...,ip).Hence the eigenvalues of the restrictionHt|Ware equal to
t∑
i(1 + 2Ni+λili),Ni=0, 1 , 2 ,..., li=± 1. (11.15)The corresponding eigenfunctionsΨt=ψ(x, t)dxi^1 ∧···∧dxipare defined
inWand not on the whole manifoldMn. Using the partition of unit one can