Cambridge Additional Mathematics
Polynomials (Chapter 6) 161 DIVISION BY QUADRATICS As with division by linears, we can use thedivision algorithmto divide polyno ...
162 Polynomials (Chapter 6) Azeroof a polynomial is a value of the variable which makes the polynomial equal to zero. ®is azeroo ...
Polynomials (Chapter 6) 163 EXERCISE 6B.1 1 Find the zeros of: a 2 x^2 ¡ 5 x¡ 12 b x^2 +6x¡ 1 c x^2 ¡ 10 x+6 d x^3 ¡ 4 x e x^3 ¡ ...
164 Polynomials (Chapter 6) Example 10 Self Tutor Findallquartic polynomials with zeros 2 , ¡^13 , and ¡ 1 § p 5. The zeros ¡ 1 ...
Polynomials (Chapter 6) 165 Example 12 Self Tutor Find constantsaandbif z^4 +9=(z^2 +az+ 3)(z^2 +bz+3) for allz. z^4 +9=(z^2 +az ...
166 Polynomials (Chapter 6) Example 13 Self Tutor x+3is a factor of P(x)=x^3 +ax^2 ¡ 7 x+6. Find a 2 R and the other factors. Si ...
Polynomials (Chapter 6) 167 9 2 x+1and x¡ 2 are factors of P(x)=2x^4 +ax^3 +bx^2 +18x+8. a Findaandb. b Hence, solve P(x)=0. 10 ...
168 Polynomials (Chapter 6) Example 16 Self Tutor When 2 x^3 +2x^2 +ax+b is divided by x+3, the remainder is¡ 11. When the same ...
Polynomials (Chapter 6) 169 7 Consider f(x)=2x^3 +ax^2 ¡ 3 x+b. When f(x) is divided byx+1, the remainder is 7. When f(x) is div ...
170 Polynomials (Chapter 6) Example 18 Self Tutor x¡ 2 is a factor of P(x)=x^3 +kx^2 ¡ 3 x+6. Findk, and write P(x) as a product ...
Polynomials (Chapter 6) 171 2aFindcgiven that x+1is a factor of 5 x^3 ¡ 3 x^2 +cx+10. b Findcgiven that x¡ 3 is a factor of x^4 ...
172 Polynomials (Chapter 6) If the leading coefficient of the polynomial 6 =1, then we need to multiply by this as well: a(x¡®)( ...
Polynomials (Chapter 6) 173 Discussion #endboxedheading Consider the general cubic p(x)=ax^3 +bx^2 +cx+d, a,b,c,d 2 R. What happ ...
174 Polynomials (Chapter 6) 2 Carry out the following divisions: a x^3 x+2 b x^3 (x+ 2)(x+3) 3 Findallcubic polynomials with zer ...
Straight line graphs 7 Contents: A Equations of straight lines B Intersection of straight lines C Intersection of a straight lin ...
10 000 20 000 30 000 40 000 50 000 V O 1234 567 8910 t 1 2 3 4 5 lgV O 1234 567 8910 t 176 Straight line graphs (Chapter 7) Open ...
Straight line graphs (Chapter 7) 177 Gradient Thegradientof a line passing through A(x 1 ,y 1 ) and B(x 2 ,y 2 ) is y-step x-ste ...
178 Straight line graphs (Chapter 7) FINDING THE EQUATION OF A LINE In order to find the equation of a line, we need to know som ...
Straight line graphs (Chapter 7) 179 EXERCISE 7A.1 1 Find the gradient andy-intercept of the line with equation: a y=3x+5 b y=4x ...
180 Straight line graphs (Chapter 7) 7 Consider the points A(2,5) and B(¡ 4 ,2). Find: a the distance between A and B b the midp ...
«
4
5
6
7
8
9
10
11
12
13
»
Free download pdf