0195136047.pdf
94 CIRCUIT ANALYSIS TECHNIQUES + V = 12.5 V− Starter motor Starter switch ON i = 60 Α Figure 2.8.3Simplified circuit model for t ...
PROBLEMS 95 2.1.4Obtain the Thévenin and Norton equivalent cir- cuits for the portion of the circuit to the left of terminalsa–b ...
96 CIRCUIT ANALYSIS TECHNIQUES 2.1.10(a) Consider the Wheatstone bridge circuit given in Figure P2.1.10(a) and find the Thévenin ...
PROBLEMS 97 2.2.3Use the node-voltage method to find the current Ithrough the 5-resistor of the circuit of Figure P2.2.3. 2.2.4 ...
98 CIRCUIT ANALYSIS TECHNIQUES 1 A 1 Ω 2 Ω^1 Ω 1 Ω V 2 Ω + − − + − + 3 V 5 V Figure P2.2.7 30 I 1 20 Ω I 1 5 Ω 10 Ω 10 Ω − + − + ...
PROBLEMS 99 R 2 = 10 Ω R 4 = 5 Ω R 1 = 20 Ω 10 V R 3 = 10 Ω 3 2 1 15 V − + + − Figure P2.2.11 1 Ω 2 A 1 Ω 2 Ω 12 V (^12) + − Fig ...
100 CIRCUIT ANALYSIS TECHNIQUES 3 Ω 3 Ω 9 Ω 3 Ω RS B A 9 Ω − + 9 V Figure P2.4.2 26 Ω 8 Ω^6 Ω 4 Ω 4 Ω 13 Ω − + 12 V Figure P2.4. ...
PROBLEMS 101 20 Ix Ix R 1 = 10 Ω Vsense = 0 R 2 = 10 Ω R 3 = 15 Ω 1 2 3 4 O VS = 10 V + − + − + − Figure P2.5.3 R 1 = 7 Ω R 4 = ...
3 Time-Dependent Circuit Analysis 3.1 Sinusoidal Steady-State Phasor Analysis 3.2 Transients in Circuits 3.3 Laplace Transform 3 ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 103 a systematic algebraic approach for determining both the forced and the natural ...
104 TIME-DEPENDENT CIRCUIT ANALYSIS The variablescan assume real, imaginary, or complex values. The time-invariant dc source is ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 105 Y(s). Note that both the impedance and the admittance are in general functions o ...
106 TIME-DEPENDENT CIRCUIT ANALYSIS EXAMPLE 3.1.2 Consider aGLCparallel circuit excited byi(t)=Iestin the time domain. Assume no ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 107 whereVmis the peak amplitude andφis the phase angle. This may be expressed in te ...
108 TIME-DEPENDENT CIRCUIT ANALYSIS − + v(t) = Vm cos ωt i(t) C R L (a) − + − + I 1 = I 1 ejθ^1 R + I 2 = I 2 ejθ^2 R −jωL (c) − ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 109 I ̄C=jωCV ̄C=jBCV ̄C (3.1.26) whereXL=ωLis theinductive reactance,XC=− 1 /ωCis t ...
110 TIME-DEPENDENT CIRCUIT ANALYSIS EXAMPLE 3.1.4 Letω= 2 π×60 rad/s corresponding to a frequency of 60 Hz. (a) Considerv(t)= 10 ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 111 − + vR = RiR ZR^ =^ R iR iR vR t (a) (b) diL R vR dt − + vL = L dvC iC = Cdt ZL ...
112 TIME-DEPENDENT CIRCUIT ANALYSIS analysis when a given voltage or current phasor is taken as the reference. Since a phasor di ...
3.1 SINUSOIDAL STEADY-STATE PHASOR ANALYSIS 113 The instantaneous powerp(t) supplied to the network by the source is p(t)=v(t)·i ...
«
2
3
4
5
6
7
8
9
10
11
»
Free download pdf