Irodov – Problems in General Physics
6.84. Let us integrate the Schrodinger equation over a small interval of the coordinate x within which there is a discontinuity ...
6.86. Suppose that Pa and Pi are the probabilities of the particle being outside and inside the well. Then co 2xx d x P a I 2 Pi ...
6.90. a = mw/2h, E = hco/2, where co = 1/kInt. 6.91. E = —me 4 18h (^2) , i.e. the level with principal quantum number n = 2. 6. ...
6.105. For the state 4 P: h;a2, h 15/2, and h V 32/2; for the state 5 D: 0, h1/2; h^ h^ h V 20. 6.106. (a) 2 F7/2, M - max — hi/ ...
6.133. X = 154 pm. 6.134. (a) 843 pm for Al, 180 pm for Co; (b)^ 5 keV. 6.135. Three. 6.136. V = 15 kV. 6.137. Yes. 6.138. Z =1+ ...
6.169. M = limd 2 E/2 = 3.5h, where m is the mass of the mole- cule. 6.170. I = hIAw = 1.93.10-4° g•cm^2 , d = 112 pm. 6.171. 13 ...
6.186. 0 = (h/k) 13 /183-t 2 no/(0- 13 + 2v-2) = 470 K, where no is the concentration of the atoms. .4 0 0 c^0 0 w H^ C^ C^ H wz ...
6.201. AE = 2:1 2 h 2 /mV (3n 2 n) 1 / 3 = 2.10-22 eV. 6.202. (a) dn, (m 3 1a^2 h^3 ) v^2 dv; (b) (v)/vmax = 3/4. 6.203. dnk = 8 ...
6.234. v= V2mc,T adm = 3.4-10 5 m/s; 0.020. 6.235. 1.6 MJ. 6.236. 0.82 MeV. 6.237. (a) 6.1 cm; (b) 2.1.10 5 and 0.77.10^5 respec ...
6.272. T > Eb (MP nic1) 1 Md = 3.3 MeV. 6.273. Between 1.89 and 2.06 MeV. 6.274. Q = — 1142 Tot = —3.7 MeV. 6.275. 1.88 and 5 ...
6.300. m 4 m;„ -- 2 (mx Tz)(m„+ T,t)-= 0.94 GeV, neutron. 6.301. T n = my, [cosec (0/2) — 1], E., = m,,/2 sin (0/2). For 0 = 60° ...
APPENDICES 1. Basic Trigonometrical Formulas sine a + cosa a = 1 sect a— tans a =1 cosecs a— cots a =1 sin a •cosec a =1 cos a • ...
2. Sine Function Values (1). 0' 20' 40' w° 0' 20' 40' 0 0.0000 0.0058 0.0116 45 0.7071 0.7112 0.7153 1 0.0175 0.0233 0.0291 46 0 ...
3. Tangent Function Values T° 0' 20' 40' T° 0' 20' 40' 0 0.0000 0.0058 0.0116^45 1.0000 • 1.012 1.024 1 0.0175 0.0233 0.0291 46 ...
4. Common Logarithms N 0 1 2 3 4 5 6 7 8 9 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 11 0414 0453 0492 0531 0569 0607 ...
(Continued) N 0 1 2 4 I 3 5 6 7 8 9 55 7404 7412 7419 7427 7435 7443 7451 7449 7466 7475 (^56 7482 7490 7497 7505 7513 7520 7528 ...
5. Exponential Functions x ex e-x x ex e-x 0.00 1.0000 1.0000 2.00 7.3891 0.1353 0.05 1.0513 0.9512 2.05 7.7679 0.1287 0.10 1.10 ...
(Continued) x ex e-x x ex ex 4.00 54.598 0.01832 6.0 403.43 0.00248 4.05 57.397 0.01742 6.1 445.86 0.00224 4.10 60.340 0.01657 6 ...
6. Greek Alphabet A, a—alpha I,^ t—iota P, p—rho B, n—beta K, x—kappa I, a—sigma I', y—gamma A, 2,.—lambda T, r—tau A, 6—delta M ...
xn+1 xn dx= — (n —1) n+1 dx = x x S sin x dx= — cos x cos x dx= sin x tan x dx= — in cos x S cot x dx = In sin x .c dx cos x — t ...
«
12
13
14
15
16
17
18
19
20
21
»
Free download pdf