TITLE.PM5
878 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-1.pm5 Throat A=A 21 Fig. 16.7. Sonic flow (M = 1). Large tank Convergent nozz ...
COMPRESSIBLE FLOW 879 dharm \M-therm\Th16-1.pm5 or V 2 =^2 1 1 1 2 2 γ ()γρρ− − F HG I KJ pp or V 2 =^2 1 (^11) 1 2 2 1 1 γ γρ ρ ...
880 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-1.pm5 m = A 2 2 1 11 2 1 2 2 1 1 γ γ ρ γ γγ − F HG I KJ − F HG I KJ L N M M M ...
COMPRESSIBLE FLOW 881 dharm \M-therm\Th16-2.pm5 Relevant relations for critical density and temperature are : ρ ρ 2 1 =^2 1 1 1 ...
882 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Fig. 16.9. depicts the variation of actual and theoretical mass flow ra ...
COMPRESSIBLE FLOW 883 dharm \M-therm\Th16-2.pm5 ∴ρ 1 = ρ 2 p p 2 1 1 F HG I KJ −γ or ρ 2 2 1 1 1 γ γ γγ + F HG I KJ − × or ρ 2 2 ...
884 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Substituting the value of γR = C T 2 in eqn. (i), we get C T dT V dV V ...
COMPRESSIBLE FLOW 885 dharm \M-therm\Th16-2.pm5 The quantity within the brackets may be positive or negative depending upon the ...
886 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Example 16.13. (a) In case of isentropic flow of a compressible fluid t ...
COMPRESSIBLE FLOW 887 dharm \M-therm\Th16-2.pm5 Let p 2 (= pc) = pressure in the throat when the flow is sonic for given pressur ...
888 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Sol. Pressure in the tank, p 1 = 284 kN/m^2 (gauge) = 284 + 100 = 384 k ...
COMPRESSIBLE FLOW 889 dharm \M-therm\Th16-2.pm5 = 7 84090 1 0 903×−(.) = 238.9 m/s i.e., V 2 = 238.9 m/s (Ans.) Example 16.16. A ...
890 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Example 16.17. At some section in the convergent-divergent nozzle, in w ...
COMPRESSIBLE FLOW 891 dharm \M-therm\Th16-2.pm5 Also, T Ts 2 = p ps 2 1 F HG I KJ −γ γ = 110 222 2 11 1 . .4 F .4 HG I KJ − = 0. ...
892 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 16.11.Shock Waves Whenever a supersonic flow (compressible) abruptly ch ...
COMPRESSIBLE FLOW 893 dharm \M-therm\Th16-2.pm5 This equation is ‘known as Rankine Line Equation. Now combining continuity and e ...
894 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 Mach number, M 2 : M 22 = () () γ γγ −+ −− 12 21 1 2 1 2 M M ...[Eqn. ( ...
COMPRESSIBLE FLOW 895 dharm \M-therm\Th16-2.pm5 16.11.2.Oblique shock wave As shown in Fig. 16.12, when a supersonic flow underg ...
896 ENGINEERING THERMODYNAMICS dharm \M-therm\Th16-2.pm5 = [(.). ][..(.)] (. ). 141 15 221415 141 14 1 15 29 59 12 96 22 22 −× + ...
COMPRESSIBLE FLOW 897 dharm \M-therm\Th16-2.pm5 C = p RT ρ= ... for isothermal process C = γ ρ p= γRT ... for adiabatic process. ...
«
40
41
42
43
44
45
46
47
48
49
»
Free download pdf