Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)
52 CHAPTER 2 Two-Dimensional Problems in Elasticity Further, ∂^4 φ ∂x^4 = 0 ∂^4 φ ∂y^4 =− 120 Dy ∂^4 φ ∂x^2 ∂y^2 = 60 Dy Substit ...
2.4 St. Venant’s Principle 53 FromEq.(vi) B+ 15 Dh^2 =0(ix) sothat,subtractingEq.(viii)fromEq.(ix) D=− q 40 h^3 Then B= 3 q 8 h ...
54 CHAPTER 2 Two-Dimensional Problems in Elasticity Fig.2.4 Stress distributions illustrating St. Venant’s principle. We may, th ...
2.6 Bending of an End-Loaded Cantilever 55 Fig.2.5 Displacements produced by rigid body rotation. 2.6 BendingofanEnd-LoadedCanti ...
56 CHAPTER 2 Two-Dimensional Problems in Elasticity Fig.2.6 Bending of an end-loaded cantilever. giving A=− Bb^2 8 Fromthesecond ...
2.6 Bending of an End-Loaded Cantilever 57 (2) the distribution of shear and direct stresses at the built-in end is the same as ...
58 CHAPTER 2 Two-Dimensional Problems in Elasticity and ∂f 2 (x) ∂x = Px^2 2 EI +C ∂f 1 (y) ∂y = Py^2 2 IG − νPy^2 2 EI +D sotha ...
2.6 Bending of an End-Loaded Cantilever 59 Thedeflectioncurvefortheneutralplaneis (v)y= 0 = Px^3 6 EI − Pl^2 x 2 EI + Pl^3 3 EI ...
60 CHAPTER 2 Two-Dimensional Problems in Elasticity Fig.2.8 (a) Distortion of cross section due to shear; (b) effect on distorti ...
Problems 61 Fig. P.2.2 asanAirystressfunctionanddeterminethecoefficientsA,B,andC. Ans. A= 2 Pl/td^3 , B=− 2 P/td^3 , C= 3 P/ 2 t ...
62 CHAPTER 2 Two-Dimensional Problems in Elasticity Fig. P.2.4 AsasolutiontothestressanalysisproblemanAirystressfunctionφispropo ...
Problems 63 Ans. Thestressfunctionsatisfiesthebiharmonicequation.Thebeamisacantileverunderauniformlydis- tributedloadofintensity ...
Thispageintentionallyleftblank ...
CHAPTER 3 Torsion of Solid Sections............................................................... Theelasticitysolutionofthetor ...
66 CHAPTER 3 Torsion of Solid Sections Fig.3.1 Torsion of a bar of uniform, arbitrary cross section. which identically satisfies ...
3.1Prandtl Stress Function Solution 67 where∇^2 isthetwo-dimensionalLaplacianoperator ( ∂^2 ∂x^2 + ∂^2 ∂y^2 ) Therefore,theparam ...
68 CHAPTER 3 Torsion of Solid Sections Thus,φisconstantonthesurfaceofthebar,andsincetheactualvalueofthisconstantdoesnotaffect th ...
3.1Prandtl Stress Function Solution 69 Fig.3.3 Derivation of torque on cross section of bar. Therefore,weareinapositiontoobtaina ...
70 CHAPTER 3 Torsion of Solid Sections Fig.3.4 Rigid body displacement in the cross section of the bar. or u=−θyv=θx (3.9) Refer ...
3.1Prandtl Stress Function Solution 71 ItisconvenienttointroduceatorsionconstantJdefinedbythegeneraltorsionequation T=GJ dθ dz ( ...
«
1
2
3
4
5
6
7
8
9
10
»
Free download pdf