Foundations of the theory of probability
§ 1.ConditionalProbabilities 49 0(A) = //(f) P(dE). A Inorderto applythistheoremtoourcase,weneedtoprove 1° that Q(A) = P(Bu-HA)) ...
50 V. ConditionalProbabilitiesandMathematicalExpectations allowustocarryovermanyotherbasicpropertiesofthe absolute probabilityP( ...
§ ConditionalProbabilities withRespecttoaKandomVariable 51 oppositepoints forourpoles, so thateachmeridiancirclewillbe uniquel ...
52 V. ConditionalProbabilitiesandMathematicalExpectations P x (a;B) was defined in § 1 except on a set G, which is suchthatP (*& ...
§ ConditionalMathematicalExpectations 53 E{u*A}(y) =E {uc^ } E tt (y) f (1) iscalled(if it exists)theconditionalmathematical e ...
54 V. ConditionalProbabilitiesandMathematicalExpectations Ifuandvaretwofunctionsoftheelementaryevent £, then thecouple (u,v) can ...
§ ConditionalMathematicalExpectations 55 isthenecessary conditionfortheexistenceofE(y) (seeChap.IV, § 1). Fromthis convergence ...
56 V. ConditionalProbabilitiesandMathematicalExpectations inthesenseof §1, Chap. IV, so that (12) is onlya symbolic expression. ...
ChapterVI INDEPENDENCE; THE LAW OF LARGE NUMBERS § Independence Definition 1 :Twofunctions,uandvof |, aremutuallyinde- pendent ...
58 VI.Independence;TheLawofLarge Numbers (2). Conversely sinceP v (uczA) isuniquelydeterminedby (4) towithinprobability zero,the ...
§ 2.IndependentRandomVariables 59 thespaceR n ,then condition (1) is also sufficientforthemutual independence of the variables x ...
60 VI. Independence;TheLawofLargeNumbers InordertoshowthisitisenoughtotakeR M forthebasicsetE andB% M forthefield g, andtodefine ...
§ 3.TheLawofLargeNumbers 61 wherethex lf x 2 , ... , x n areuncorrelatedinpairs,wecaneasily computethat o 2 (s)=o 2 (*,) + o*(x ...
62 VI. Independence;TheLawofLargeNumbers Ifs n -E(s n ) are uniformly bounded: \s n -E(s n) \^M, thenfromtheinequality (9) in § ...
§ 3.The Law of LargeNumbers 63 We set Xnl;=%k if I ^fc-mfc | ^ n, Xnk ~~ otherwise, c* _ Xn +*„*+ ••• +*„ « jrelations k=n ZP{|* ...
64 VI. Independence;TheLawofLargeNumbers Then s n — E(s„)=z x + z 2 + 4- z n, E{z nk) =EE 3ll 9( 8 ... 9lifc (s n) — E ...
§ NotesontheConceptofMathematical Expectation 65 asageneralizedmathematical expectation.Welosein thiscase, ofcourse,severalsim ...
66 VI. Independence;TheLawofLargeNumbers (Chap. IV, §2) stillhold;ingeneral,however,theexistenceof E*|x | doesnotfollowfromtheex ...
§ 5.StrongLawofLargeNumbers;ConvergenceofSeries 67 where the variables x n are mutuallyindependent. A sufficient 8 conditionfort ...
68 VI. Independence;TheLawofLargeNumbers Theninorderthatseries ( 1 ) convergewiththeprobabilityone, itisnecessaryandsufficient 1 ...
«
1
2
3
4
5
»
Free download pdf